

Sa. lewith
Loronts fune $22 \pi / 8 \%$
$\left(\frac{1)}{1}=\right.$
.

USEFUL INFORMATION FOR
 Architects, Engineers, AND
 Workers in Wrought Iron,
 BY THE

 PHEENIX IRON COMPANY.

 PHEENIX IRON COMPANY.
 OFFICE,
 410 WALNUT STREET, PHILADELPHIA. works, Pheenixville, Pa. REVISED EDITION, 1886.

COPYRIGHT, 1885, BY PHENIX IRON COMPANY.

PRINTED BY

J. B. LIPPINCOTT COMPANY, PHILADELPHIA.

THE

Phenix Iron Company

410 Walnut ST., Philadelphia, MANUFACTURERS OF

Wrought Iron Roof Trusses,

EITHER CURVED, STRAIGHT, OR HIPPED. ALSO,
Wrought Iron Purlins and Jack Rafters,
ARRANGED TO SUIT SHEE'T IFON OR SLA'TE COVERING.

LIN K S,

TO FORM BOTTOM CHORDS FOR BRIDGES, OF ANY SIZE OR LENGTH, MADE WITHOUT WELDING.

Patent Wrought Iron Columns

FOR TOP CHORDS OR POSTS OF BRIDGES OR PIERS, DEPOTS, FACTORIFS, ETC.
 ALI PARTS OF
 Bridges or Fire Proof Floors and Roofs

MADE AND FIT'TED TO SUIT DES!GNS OF ENGINEERS AND ARCHITECTS.

BEAMS, ANGLES, T AND SHAPE IRON, REFINED BARS, ETC.

EOFFICERS. $\$$

DAVID REEVES, President, GEORGE GERRY WHITE, Secretary, JAMES O. PEASE, Treasurer, PHILADELPHIA.
W. H. REEVES, General Superintendent, AMORY COFFIN, Chief Engineer, R. H. DAVIES, Master Mechanic, PHCENIXVILLE.

CONTENTS.

PAGE
Air, notes on 125
Angle brackets 86
Angle iron, price-list 48
properties of 64
Arches of floors 90
Areas of circles 155
Avoirdupois weight 159
Bar iron, price-list 43
sizes of 42
properties of 60
weight of 128
Beams, deck, price-list. 45
I, as floor joists 85
details of construction 90
elements of 75
girders 126
price-list 44
properties of 6I
table for spacing 40
tables of strength and stiffness 78
Bearing values of rivets 59
Bending moments of pins 58
Boiler tubes, tables of 143
Bolts, tables of 141
Bracing of roofs 112
Brackets, angle 86
Brass, weight of 136
Bricks, hollow 92
Cast-iron pipes, weight of 133
Channeliron price-1ist 46
properties of 62
Circles, areas of 155
circumferences of 154
properties of 148
Cisterns, capacity of 145
Colors of iron caused by heat 124
Columns, cast and wrought 96
fire-proofing 95

THE PHCENIX IRON COMPANY,

Columns, formulæ for 98
price-list 52
tables of sizes 100
Comparative strength of beams 72
columns 98
Compound Girders 88
Copper, weight of 136
Corrugated iron I34
Cubic measure 158
Deck beams, price-list 45
Deflexion, formulæ for 76
Diagram for \mathbf{I} beams 40
Dies, list of 54
Diminution of tenacity of wrought iron . . . 122
Elasticity, modulus of II8
Elements of beams 75
Equivalents, trigonometrical ${ }^{151}$
Eye bars, list of dies for 54
proportions of 104
Fire-proofing columns 95
Flagging 145
Floor glass 145
Floors 69
Formulæ for columns 98
deflexion 76
strength of beams 74
French measures 156
Galvanized iron I34
Gas-pipe 142
Gauges, wire I35
Girders, beam 126
compound 88
Glass, sizes of 144
Gravity, specific 147
Hollow Bricks 92
Kirkaldy's conclusions II9
Lead, weight of 136
Linear expansion of metals 123
List of dies 54
Long measure ${ }_{556}$
Machine-shop roofs 112

410 WALNUT ST., PHILADELPHIA.
Mansard roofs 108
Melting point of metals 124
Miscellaneous shapes 5I
Modulus of elasticity 118
Nails, sizes and weights 139
Natural sines, etc., table 152
Nuts, tables of sizes 140
Phœnix columns, price-list 52
tables of sizes 100
tests of I 16
Pins, proportions of 104
Pipe, weight of cast-iron I33
Price-list, angles 48
bar iron 42
beams, deck 45
beams, I 44
channels 46
miscellaneous shapes 51
Phœnix columns 52
T bars 47
Properties of circles 148
iron II9
triangles 150
Purlins 106
Railroad spikes and splices 135
Rails, weight per mile 135
Rivets, table of weights 138
shearing and bearing, values of 59
Roofs, bracing of 112
general details 102
machine-shop 112
Mansard 108
Rules for weight of iron 132
Screw ends, upset, sizes of 55
Separators and bolts, tables of 86
Shearing values of rivets 59
Sines, table of natural 153
Skew-backs 104
Slate, sizes of 146
Spacing of beams 40
Specific gravity 147

THE PHGENIX IRON COMPANY.

PAGE
Specifications of quality 117
Splices and bolts 135
Square measure 157
Strength of beams 72
Surveying measure 156
Tables of beams. I. Elements of 75
II. Strength of 78
III. Spacing 40

Table of bolts I4I
cast-iron pipe 133
glass I44
nails and tacks I39
nuts 140
rivets 138
round and square iron 130
sizes of columns 100
spacing of beams 40
strength of beams 78
strength of columns 98
washers 141
weight of bar iron 128
weight of wire 137
T bars, price-list 47
properties of 68
Tension, notes on 117
Tests of beams 114
columns 116
Triangles, properties of 150
Trigonometrical equivalents 151
Upset screw ends 55
Washers, table of $\mathbf{I 4}$
Weight of bar iron 128
brackets and fittings 86
brass, copper, and lead 136
round and square iron 130
separators and bolts 86
various substances 147
wire 137
Wight's fire-proofing for columns 95
Wire gauges 135
Wrought-iron columns 96

THE PHEENIX IRON COMPANY,

410 WALNUT ST., PHILADELPHIA.

No. 55
170 LBS

$12 "$

THE PHCENIX IRON COMPANY,

410 WALNUT ST., PHILADELPHIA.

THE PHEENIX IRON COMPANY,

No. 112

NEW BEAMS.

THE PHCENIX IRON COMPANY,

410 WALNUT ST., PHILADELPHIA.
IRON DECK BEAMS.
MINIMUM SIZE.

No. 60 69 TO 80 LBS

No. 115
$=\quad 62$ LBS
$\frac{1}{2}$

THE PHCENIX IRON COMPANY,

STEEL DECK BEAMS. minimum size.

STEEL DECK BEAMS.

MINIMUM SIZE.

THE PHCENIX IRON COMPANY,

410 WALNUT ST., PHILADELPHIA.

No. 129 57 TO 75 LBS

> No. 123 47 TO 57 LBS

No. 130
75 TO 111 LBS
$10 "$

THE PHCENIX IRON COMPANY,

410 WALNUT ST., PHILADELPHIA.

410 WALNUT ST., PHILADELPHIA.

COLUMN SEGMENTS.

ANY REQUIRED WEIGHT BETWEEN THOSE SPECIFIED WILL BE ROLLED TO ORDER.

4 SEG

THE PHCENIX IRON COMPANY,

410 WALNUT ST., PHILADELPHIA.

THE PHCENIX IRON COMPANY,

No. 46 49 LBS

No. 101 281/2 LBS

No. 102 21 LBS

No. 103 9 LBS

No. 24 30 LBS
No. 45
32 LBS

No. 98
18 LBS

No. 84
16 LBS

410 WALNUT ST., PHILADELPHIA.

No. 132
25 LBS

No. 34 LBS

$$
4
$$

No. $33 \quad 41 / 2$ LBS

No. 56 ө LBS
No. 108
15 TO 45 LBS

No. 107 15 TO 45 LBS

THE PHGENIX IRON COMPANY,
EQUAL-SIDED ANGLES.

410 WALNUT ST., PHILADELPHIA.

UNEQUAL-SIDED ANGLES.

No. 96 $71 / 2$ TO 9 LBS

STANDARD SPACING FOR HOLES IN BEAM FLANGES.

STANDARD SPACING FOR HOLES IN BEAM FLANGES.

THE PHCENIX IRON COMPANY,

410 WALNUT ST., PHILADELPHIA.

STANDARD BRACKETS.

FOR $12^{\prime \prime}$ AND $101^{1 / 2}$

FOR $7^{\prime \prime}$ AND 6"

FOR $5^{\prime \prime}$ AND $4^{\prime \prime}$

THE PHCENIX IRON COMPANY,
load per
square foot. CLEAR SPAN IN FEET. \quad load per

Price Current.

SUBJECT
 TO
 CHANGES OF MARKET

WITHOUT NOTICE.

NOTE CONCERNING SHAPE IRON.
If any particular dimension is specially desired, attention must be directed to it when ordering, as slight alterations of patterns may occasionally be made in the rolls.

SIZES OF PHEEIX BAR IRON.

ROUNDS.

$\frac{3}{16}, \frac{3}{8}, \frac{7}{16}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, \frac{13}{1} \frac{7}{6}, \frac{1}{8} \frac{1}{16}, 1,1 \frac{1}{8}, 1 \frac{1}{4}, 1 \frac{3}{8}, 1 \frac{1}{2}, 1 \frac{5}{8}$, $1 \frac{3}{4}, 1 \frac{7}{8}, 2,2 \frac{1}{8}, 2 \frac{1}{4}, 2 \frac{3}{8}, 2 \frac{1}{2}, 2 \frac{5}{8}, 2 \frac{3}{4}, 2 \frac{7}{8}, 3,3 \frac{1}{8}, 3 \frac{1}{4}, 3 \frac{3}{8}, 3 \frac{1}{2}$, $3 \frac{5}{8}, 3 \frac{3}{4}, 3 \frac{7}{8}, 4,4 \frac{1}{4}, 4 \frac{1}{2}, 4 \frac{3}{4}, 5,5 \frac{1}{4}, 5 \frac{1}{2}, 5 \frac{3}{4}, 6,6 \frac{1}{4}, 6 \frac{1}{2}, 6 \frac{3}{4}, 7$.

SQUARES.

$\frac{5}{16}, \frac{3}{8}, \frac{7}{16}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, \frac{1}{1} \frac{3}{6}, \frac{7}{8}, \frac{15}{16}, \mathrm{I}, \mathrm{I}_{1} \frac{1}{16}, \mathrm{I} \frac{1}{8}, \mathrm{I}_{\frac{3}{16}}$,

$$
\begin{gathered}
1 \frac{1}{4}, 1 \frac{3}{8}, 1 \frac{1}{2}, 1 \frac{5}{8}, 1 \frac{3}{4}, 1 \frac{7}{8}, 2,2 \frac{1}{8}, 2 \frac{1}{4}, 2 \frac{3}{8}, 2 \frac{1}{2}, 2 \frac{5}{8}, \\
2 \frac{3}{4}, 3,3 \frac{1}{4}, 3 \frac{1}{2}, 3 \frac{3}{4}, 4,4 \frac{1}{4}, 4 \frac{1}{2}, 4 \frac{3}{4}, 5 .
\end{gathered}
$$

FLATS.

Width in Inches.	Thickness in Inches.	Width in Inches.	Thickness in Inches.
$\frac{3}{4}$ $\frac{7}{8}$	$\begin{gathered} \text { Min. Max. } \\ \frac{1}{8} \text { to } \frac{5}{8} \\ \frac{1}{8} \text { to } \frac{3}{4} \end{gathered}$	4 $4 \frac{1}{4}$ $4 \frac{1}{2}$	$\begin{aligned} & \text { Min. Max. } \\ & \frac{1}{4} \text { to } 3^{\frac{1}{2}} \\ & \frac{1}{4} \text { to } 3^{\frac{1}{2}} \\ & \frac{1}{4} \text { to } 4 \end{aligned}$
1	$\frac{1}{8}$ to $\frac{7}{8}$		
$1 \frac{1}{8}$	$\frac{1}{8}$ to $\frac{7}{8}$	${ }_{5}^{1}$	$\frac{1}{4}$ to $4 \frac{1}{2}$
${ }^{1} \frac{1}{4}$	$\frac{1}{8}$ to 1	52	${ }_{4}$ to $4 \frac{1}{2}$
18	$\frac{8}{8}$ to $1 \frac{1}{4}$	6	$\frac{1}{4}$ to 5
$1 \frac{5}{8}$	$\frac{1}{8}$ to $1 \frac{1}{4}$	$6 \frac{1}{2}$	$\frac{1}{4}$ to 2
$1 \frac{3}{4}$	$\frac{1}{8}$ to $1 \frac{1}{4}$		$\frac{1}{4}$ to $2 \frac{1}{2}$
I $\frac{7}{8}$	$\frac{1}{8}$ to $1 \frac{1}{4}$	$7 \frac{1}{2}$	$\frac{1}{4}$ to 2^{2}
2	$\frac{1}{4}$ to $1 \frac{7}{8}$	8	to $2 \frac{1}{2}$
$2 \frac{1}{4}$	$\frac{1}{4}$ to $\frac{1}{8}$	8	to 2_{2}
$2 \frac{1}{2}$	$\frac{1}{4}$ to 178	9	$\frac{1}{4}$ to $11{ }_{4}$
$2 \frac{3}{4}$	${ }_{4}$ to $1 \frac{7}{8}$	10	$\frac{1}{4}$ to $1 \frac{1}{4}$
3	$\frac{1}{4}$ to $2 \frac{1}{2}$		
$3{ }_{4}^{1}$	${ }_{4}^{1}$ to $2 \frac{3}{4}$	II	$\frac{1}{1}$ to $1 \frac{1}{4}$
$2 \frac{1}{2}$ 3	c 1 1 to to	12	$\frac{1}{4}$ to $1 \frac{1}{4}$
34	${ }^{\text {I }}$ (o 34		

410 WALNUT ST., PHILADELPHIA.

ORDINARY SIZES.

$\frac{3}{4}$ to 2 inches. Round and Square $\left.\begin{array}{lll}\text { I to } 4 & \text { " } & \times \frac{3}{8} \text { to } I^{\frac{1}{2}} \\ 4 \frac{1}{8} \text { to } 6 & \text { " } & \times \frac{3}{8} \text { to } I\end{array}\right\}$ Flats

EXTRA SIZES.
 - ROUND AND SQUARE.

$\frac{5}{16}, \frac{3}{8}, \frac{7}{16}$.	${ }^{\frac{3}{0}} \mathrm{c}$.	$4 \frac{1}{8}$ to $4^{\frac{1}{2}}$	$\frac{6}{10} c$.
$\frac{1}{2}$ and $\frac{9}{16}$	- $\frac{2}{10} \mathrm{c}$.	$4 \frac{5}{8}$ to 5	${ }_{1}^{8}$
$\frac{5}{8}$ and $\frac{11}{16}$	$\frac{1}{10} \mathrm{c}$.	$5^{\frac{1}{4}}$ to $5^{\frac{1}{2}}$	
$2 \frac{1}{8}$ to $2 \frac{7}{8}$	$\frac{1}{10} \mathrm{c}$.	$5 \frac{3}{4}$ to 6	
3 to $3 \frac{1}{2}$	$\frac{3}{10} \mathrm{c}$.	$6 \frac{1}{4}$ to $6 \frac{1}{2}$	
$3 \frac{5}{8}$ to 4	$\frac{5}{10} \mathrm{c}$	63 to 7	2_{1}

EXTRA SIZES.
 FLAT IRON.

o $\frac{3}{4} \cdot . \cdot \frac{4}{10} \mathrm{c}$.	to $3 \frac{1}{2}$	$\frac{6}{10} \mathrm{C}$
$1 \times \frac{3}{16} \cdot$. . $\frac{4}{10} \mathrm{c}$.	$7 \frac{1}{2} \times \frac{3}{8}$ to 1 .	$\frac{4}{10} \mathrm{c}$
to $6 \times \frac{1}{4}$ and $\frac{5}{16} \quad \frac{2}{10} \mathrm{c}$.	$7 \frac{1}{2} \times 1{ }^{\frac{1}{8}}$ to 2	$\frac{6}{10} \mathrm{c}$
2 to $4 \times 1 \frac{5}{8}$ to $2 . \quad \frac{2}{10} \mathrm{c}$.	$8 \times \frac{3}{8}$ to	${ }^{4} \mathrm{c}$
2 to $4 \times 2 \frac{1}{8}$ to 3 . $\frac{3}{10} \mathrm{c}$.	$8 \times 1{ }^{\frac{1}{8}}$ to $2 \frac{3}{4}$	6
$4 \frac{1}{8}$ to $6 \times 1 \frac{1}{8}$ to $2 . \quad \frac{2}{10} \mathrm{c}$.	$9 \times \frac{3}{8}$ to \mathbf{I}	$\frac{6}{10}$
$4 \frac{1}{8}$ to $6 \times 2 \frac{1}{8}$ to 3 . $\frac{4}{10} \mathrm{c}$.	$9 \times 1 \frac{1}{8}$ to 2 .	$\frac{3}{10} \mathrm{c}$
$6 \frac{1}{2} \times \frac{3}{8}$ to I . . . $\frac{2}{10} \mathrm{c}$.	$10 \times \frac{3}{8}$ to \mathbf{I}_{4}^{1}	- $\frac{8}{10}$
$6 \frac{1}{2} \times 1 \frac{1}{8}$ to $2 \frac{1}{2} \cdot \frac{4}{10}^{10} \mathrm{c}$.	$11 \times \frac{3}{8}$ to $I^{\frac{1}{4}}$	${ }_{1}^{10}$
X $\frac{3}{8}$ to $1 . . . \frac{2}{10} \mathrm{c}$.	$12 \times \frac{3}{8}$ to $\mathrm{I}_{4}^{\frac{1}{4}}$	10
$\times 1 \frac{1}{8}$ to $2 . . . \frac{4}{10} \mathrm{c}$.		

ADDITIONAL EXTRAS.

CUTTING TO LENGTHS.

 ROUNDS AND SQUARES.Up to 4 inches, 10 to 20 feet long $\frac{2}{10} \mathrm{c}$. Over 4 " " " " $\frac{3}{10}$ c. Under 10 and over 20 feet, subject to agreement.

FLATS.

Io to 30 feet long $1^{2} \mathrm{c}$. Over 30 , for every io feet or fraction thereof, $\frac{1}{10} c$. extra. Under 10 feet, subject to agreement.

THE PHCENIX IRON COMPANY,

I BEAMS.

To fill special orders, the weight of any of the above can be increased about ten per cent.

410 WALNUT ST., PHILADELPHIA.
DECK BEAMS.

SHAPE.	No.	Depth.	Width of Flange.	Thickness of Web.	$\begin{aligned} & \text { Weight } \\ & \text { per Yard. } \end{aligned}$
		Inches.	Inches.	Inch.	Pounds.
\square	104	$1{ }^{1} \frac{1}{2}$	5	$\frac{7}{16}$	95 to 112
	88	10	5	$3^{\frac{7}{6}}$	85 to 105
	60	9	5	$\frac{11}{32}$	69 to 8o
	61	8	$4 \frac{3}{4}$	$\frac{21}{6} 4$	60 to 72
	62	7	$4{ }^{\frac{1}{2}}$	$\frac{5}{16}$	51 to 62
	63	6	$4{ }^{\frac{1}{4}}$	$\frac{9}{32}$	42 to 51
	64	5	3	$\frac{3}{8}$	35 to 40

STEEL DECK BEAMS.

140	9	5	$\frac{15}{32}$	84 to 95		
139	8	5	$\frac{1}{3} \frac{5}{2}$	$73 \frac{1}{2}$ to 84		
137	6	$4 \frac{1}{2}$	$\frac{7}{16}$	54 to 63		
62	7	$4 \frac{1}{2}$	$\frac{5}{16}$	51	to	62
63	6	$4 \frac{1}{4}$	$\frac{9}{32}$	42 to 51		
64	5	3	$\frac{3}{8}$	35 to 40		

The dimensions given correspond to the minimum weights.

THE PHCENIX IRON COMPANY,

CHANNEL BARS.

SHAPE.	No.	Depth.	Width of Flange.	Thickness of Web.	Weight per Yard.
		Inches.	Inches.	Inch.	Pounds.
	124	15	4	$\frac{5}{8}$	I 50 to 200
	140	15	$3 \frac{1}{2}$	$\frac{1}{2}$	I 15 to 150
	52	12	3	$\frac{1}{2}$	88 to 150
	141	12	3	$\frac{5}{16}$	60 to 88
	97	$10 \frac{1}{2}$	$\left.\begin{array}{l} 2 \frac{3}{8} \end{array}\right\}$	$\frac{3}{8}$	60 only
	130	10	$2 \frac{5}{8}$	$\frac{1}{2}$	75 to III
	129	10	$2 \frac{1}{4}$	$\frac{3}{8}$	57 to 75
	142	10	$2 \frac{1}{2}$	$\frac{5}{16}$	48 to 60
	53	9	$2 \frac{3}{4}$	$\frac{1}{2}$	70 to 100
	110	9	$2 \frac{1}{2}$	$\frac{3}{8}$	50 to 70
	143	9	$2 \frac{1}{2}$	${ }_{1}^{5}$	37 to 50
	123	8	$2 \frac{3}{8}$	$\frac{3}{8}$	47 to 57
	122	8	2	$\frac{1}{4}$	30 to 45
	137	7	$2 \frac{1}{4}$	$\frac{5}{16}$	35 to 57
	136	7	2	$\frac{7}{32}$	25 to 34
	50	6	$2 \frac{1}{2}$	$\frac{7}{16}$	47 to 5^{6}
	5 I	6	$2 \frac{1}{16}$	$\frac{1}{4}$	28 to 3^{6}
	144	6	I $\frac{3}{4}$	$\frac{1}{6} \frac{1}{4}$	22 to 28
	I2I	5	2	$\frac{5}{16}$	27 to 30
	120	5	I $\frac{3}{4}$	$\frac{3}{16}$	17 to 21
	119	4	2	$\frac{5}{16}$	24 to 27
	II8	4	I $\frac{3}{4}$	$\frac{3}{16}$	15 to 18
	II7	3	I $\frac{5}{8}$	$\frac{3}{8}$	18 to 21
	116	3	$1 \frac{1}{2}$	$\frac{1}{4}$	15 to 18

Any increase in thickness of web adds to the width of flanges and to the weight. No. 97 does not admit of any change in its dimensions. The dimensions given correspond to the minimum weights.

410 WALNUT ST., PHILADELPHIA.

T BARS.

Note.-No change can be made in the above dimensions.

THE PHCENIX IRON COMPANY,

EQUAL-SIDED ANGLES.

SHAPE.	No.	DIMENSIONS.	Weight per Yard.
,		Inches.	Pounds.
	127	$6 \times 6 \times \frac{7}{16}$ to $\frac{1}{1} \frac{3}{6}$	50.3 to 93.5
	126	$5 \times 5 \times \frac{13}{3}$ to $\frac{1}{1} \frac{1}{6}$	37.0 to 62.0
	14	$4 \times 4 \times \frac{3}{8}$ to $\frac{11}{1} \frac{1}{6}$	28.1 to 51.6
	15	$3 \frac{1}{2} \times 3 \frac{1}{2} \times \frac{5}{16}$ to $\frac{5}{8}$	20.5 to 41.0
	16	$3 \times 3 \times \frac{1}{4}$ to $\frac{1}{2}$	I 5.0 to 28.1
	37	$2 \frac{3}{4} \times 2 \frac{3}{4} \times \frac{1}{4}$ to $\frac{1}{2}$	13.4 to 25.8
	17	$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{7}{3} \frac{7}{2}$ to $\frac{1}{2}$	10.5 to 23.6
	38	$2 \frac{1}{4} \times 2 \frac{1}{4} \times \frac{3}{16}$ to ${ }^{\frac{7}{6}}$	8.0 to 18.3
	18	$2 \times 2 \times \frac{3}{16}$ to $\frac{3}{8}$	7.5 to 14.0
	19	$1 \frac{3}{4} \times 1 \frac{3}{4} \times \frac{3}{16}$ to $\frac{5}{16}$	6.1 to 10.1
	20	$1 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{5}{32}$ to $\frac{1}{4}$	4.4 to 7.1
	39	$1 \frac{1}{4} \times 1 \frac{1}{4} \times \frac{1}{8}$ to $\frac{3}{16}$	2.8 to 4.3
	40	$1 \times 1 \times \frac{1}{8}$ to $\frac{3}{16}$	2.4 to 3.6

Note.-The sides of Angles agree only with the minimum thickness in table; they increase in width as the thickness increases.

Orders should specify either the thickness or the weight required, but never both.

410 WALNUT ST., PHILADELPHIA.

UNEQUAL-SIDED ANGLES.

See note on opposite page.

THE PHCENIX IRON COMPANY，

PHENIX ANGLE IRON．

TABLE OF THICKNESS AND WEIGHT
PER YARD，
AS ORDINARILY MADE．

$\begin{aligned} & \dot{\ominus} \\ & \dot{\bullet} \end{aligned}$	Size．	Weight		20.	Weight		Size．	Weight		Size．	Weig
	IN．	LbS									
					5			40.7			
		57.5			． 0		16	3.8			
	$\frac{9}{16}$	64.7	๙	${ }^{6}$	9	\pm		0．0	¢	$\frac{7}{6}$	33.0
	$\frac{5}{8}$	71.9	\times		7.8	\times		6.2			
		7	～		． 7	※＊		． 4			2.4
		86			． 6			8．6			47.1
	16	93.5						4.8			
											6.5
8	$\frac{1}{3}{ }^{3}$	37.0			8.0				\times	1 6	30.9
	I6	40.0	－		10.5			5	\cdots		$35 \cdot 3$
	16	45.5	$\times 2$	$\frac{5}{16}$	13.1		${ }^{7} 6$	． 5		$\underline{16}$	39.7
	1.6	51.0			15.7			$47 \cdot 5$			5
					18.3	$\times 2$	$\frac{9}{16}$	53.4	ल゙		26.5 30.9
	$\frac{1}{1} \frac{1}{6}$	62.0				$\stackrel{\times}{\times}$		53.4	\times	16	． 9
											$35 \cdot 3$
		28.1						5．3		$\frac{9}{16}$	39.7
	${ }^{7}$	3	\sim		8.5		$\frac{3}{4}$	1.2			
4	16		\times		9.4						
\times	9 ${ }^{1} 6$				11.7						． 6
＊	${ }_{5}^{1}{ }^{6}$	42.2			0			33.8	\times	$\frac{7}{16}$	28.7
		46.9				※～	$\frac{7}{16}$	$39 \cdot 4$	＋		32.8
	$\frac{1}{1} \frac{1}{6}$	51.6						45.0		16	36.9
						\bigcirc		50.6			
	${ }^{5} 16$				． 1		$\frac{5}{8}$	56.2			9.7
			m		IO． 1						$3 \cdot 3$
	$\frac{7}{16}$	28.7							\times	16	6.7
		32.8							ल゙		30.4
		36.9			4.4					16	34． 1
	$\frac{5}{8}$	41.0			$5 \cdot 3$						
			X		6.2	－		8			． 0
$\begin{aligned} & \infty \\ & \times \\ & \infty \end{aligned}$					I			8			6.2
	${ }^{5}{ }^{5}$	18.2					$\frac{5}{8}$	53． 1	\times		9.4
											． 6
		24.8	－${ }_{\text {－}}$		2.8					${ }^{\frac{1}{2}}$	25.8
	$\frac{1}{2}$	28.1	\times		$3 \cdot 5$			27.5			
$\stackrel{\sim}{*}$			边		4.3			30.0			1.9
		1					7	35.0	\times		14.8
		16.5				\times		40.0	∞		17.8
		19.6			4		$\frac{9}{16}$	45.0			
	16	22.7	\times		3.0			50.0	x	$1{ }^{\frac{3}{6}}$	$7 \cdot 5$
	2	25	$-$	$\frac{3}{16}$	3.6		$\frac{1}{16}$	55.0		$\frac{1}{4}$	9.0

410 WALNUT ST., PHILADELPHIA.

MISCELLANEOUS SHAPES.

SHAPE.	No.	dimensions.	Weight per Yard.
	115	Inches. 10 $\times \frac{1}{2}$ Bulb	Pounds. 62
	133	$3 \frac{1}{4} \times 2 \times \frac{9}{16}$	25
	135	$3{ }^{\frac{1}{4}} \times 1 \frac{9}{16} \times \frac{5}{16}$	$14 \frac{1}{2}$
	32	${ }_{2} \frac{1}{2} \times 1 \frac{1}{4} \times{ }^{\frac{1}{4}}$	9
	33	${ }_{1} \frac{3}{4} \times \frac{3}{4} \times \frac{3}{16}$	$4{ }^{\frac{1}{2}}$
	34	$\mathrm{I}_{4}^{\frac{3}{4}} \times 1 \frac{1}{4} \times \frac{3}{16}$	6
	56	${ }^{2} \frac{1}{4} \times \frac{9}{16}$	9
	107	$7 \frac{1}{4} \times \frac{3}{16}$ to $\frac{1}{2}$	15 to 45
	108	Slight difference in shape.	

PRICE OF PHENIX COLUMNS.

RIVETED UP AND TURNED OFF AT ENDS TO SPECIFIED LENGTHS.

ORDINARY LENGTHS.

A columns Io to 20 feet. All other columns 10 to 30 feet.
Columns longer or shorter than the ordinary lengths will be at an extra price. Any attachments made or work done will increase the cost.
A, B^{1}, B^{2}, and C are 4 Segments. E is 6 Segments. G is 8 Segments.

C, E, and G Columns.

Over Three-eighths of an Inch Thick.
Cross section containing over $31 / 2 \square$ inches per Segment. ORDINARY SIZES. Io feet to 30 feet long cents per lb.

EXTRAS.
 C, E, and G Columns.

Over Three-eighths of an Inch Thick.
Cross section containing over $31 / 2 \square$ inches to each Segment. Over 30 feet to 40 feet $\frac{1}{10}$ cent per lb.
" 40 " 45 "........$\cdot \frac{3}{10}$ " ${ }^{3}$

Three-eighths to One-Quarter.
Cross section containing $31 / 2 \square$ inches per Segment, or less.
10 feet to 30 feet $\frac{2}{10}$ cent per lb.

B^{2} Columns.

Over Three-eighths of an Inch Thick.
Cross section containing ros ${ }_{10}^{\frac{6}{9}} \square$ inches, or over. Io feet to 30 feet $\frac{1}{10}$ cent per lb.

Three-eighths to One-quarter.
Cross section containing $7 \frac{4}{10} \square$ inches, or over.
Io feet to 30 feet $\frac{4}{10}$ cent per lb.
Over 30 " 40 "
$\frac{5}{10}$ " "

Under io " 5 " $\frac{4}{10}$ " "

B^{1} Columns.

Over Three-eighths of an Inch Thick. Cross section containing $9 \frac{2}{2} \square$ inches, or over. Io feet to 30 feet $\frac{3}{10}$ cent per 1 lb .

Over 30 " 35

Three-eighths to One-Quarter.
Cross section containing $6_{10}^{4} \square$ inches, or over. Io feet to 30 feet $\frac{5}{10}$ cent per lb .

Over	30	"	35	.
Under	10	.	.	.

A Columns.

Three-eighths to One-Quarter of an Inch Thick.
Cross section containing $4 \frac{8}{10} \square$ inches, or over. Io feet to 20 feet

I cent per lb.

Under One-quarter to Three-Sixteenths.
Cross section containing $3_{10}^{8} \square$ inches, or over. Io feet to 20 feet I_{10}^{2} cent per lb .

THE PHCENIX IRON COMPANY,

LIST OF
DIE-FORGED EYES ON FLAT BARS.

SIZE OF BAR.	Diameter of Pin.	SIZE OF HEAD.		DIE No.
Inches.		Inches.		
$2 \times \frac{5}{8}$	$2 \frac{1}{16}$	$4 \times \frac{7}{8}$	$\frac{1}{4}$	206
$2 \times \frac{3}{4}$	$2 \frac{3}{16}$	$4 \frac{1}{2} \times 1$	4	207
$2 \times \frac{7}{8}$	$2 \frac{7}{16}$	$5 \times 1 \frac{1}{8}$	$\frac{1}{4}$	204
2×1	$2 \frac{9}{16}$	$5 \frac{1}{2} \times 1{ }^{\frac{1}{4}}$	4	205
$2 \frac{1}{2} \times \frac{3}{4}$	$2 \frac{1}{16}$	$4 \frac{1}{2} \times 1 \frac{1}{16}$	$\frac{5}{16}$	203
$2 \frac{1}{2} \times \frac{3}{4}$	$2 \frac{1}{1} \frac{1}{6}$	$5 \frac{1}{2} \times 1{ }^{\frac{1}{8}}$	$1{ }^{\text {c }}$	156
$2 \frac{1}{2} \times \frac{5}{8}$	$2 \frac{1}{1} \frac{5}{6}$	$6 \times \frac{7}{8}$		77
$2 \frac{1}{2} \times \quad \frac{3}{4}$	$3{ }_{1} \frac{7}{6}$	$6 \frac{1}{4} \times$ I	4	160
$3 \times \frac{3}{4}$	$2 \frac{11}{1} 6$	6×1	$\frac{1}{4}$	172
$3 \times \frac{3}{4}$	$21 \frac{1}{6}$	7×1	$\frac{1}{4}$	1
$3 \times \frac{15}{15}$	$3 \frac{7}{16}$	$7 \frac{1}{4} \times 1 \frac{3}{16}$	$\frac{1}{4}$	153
$3 \times 1 \frac{1}{8}$	$31 \frac{1}{1} 6$	$7 \frac{1}{2} \times 1 \frac{3}{8}$	4	152
3×1	$4 \frac{3}{16}$	$7 \frac{3}{4} \times 1{ }^{\frac{1}{4}}$	$\frac{1}{4}$	169
$3 \times 1 \frac{1}{8}$	$4 \frac{3}{16}$	$8 \frac{1}{8} \times \mathrm{I} \frac{1}{2}$	$\frac{3}{8}$	144
3×1	$5 \frac{3}{16}$	$8 \frac{5}{8} \times 1 \frac{3}{8}$	$\frac{3}{8}$	137
$3 \frac{1}{2} \times \quad \frac{7}{8}$	$2 \frac{1}{1} \frac{1}{6}$	$7 \times 1 \frac{1}{4}$	$\frac{3}{8}$	155
$3 \frac{1}{2} \times \quad \frac{3}{4}$	$3 \frac{3}{16}$	$7 \frac{1}{2} \times 1 \frac{1}{8}$		176
$3 \frac{1}{2} \times 1 \frac{3}{16}$	$3 \frac{7}{16}$	$8 \times 1 \frac{7}{16}$	4	I 54
$3 \frac{1}{2} \times \quad \frac{7}{8}$	31.	$8 \frac{1}{4} \times \mathrm{I}^{1{ }_{4}^{1}}$	${ }^{3}$	175
$3 \frac{1}{2} \times \quad \frac{3}{4}$	$4 \frac{7}{16}$	$8 \frac{1}{2} \times 1 \frac{1}{8}$	$\frac{3}{8}$	157
4×1	3	$7 \frac{1}{4} \times 1 \frac{3}{8}$	$\frac{3}{8}$	159
4×1	$3 \frac{1}{16}$	$7 \frac{3}{4} \times 1 \frac{3}{8}$	$\frac{3}{8}$	177
$4 \times 1 \frac{1}{4}$	$3 \frac{7}{16}$	$8 \frac{1}{2} \times 1 \frac{5}{8}$	$\frac{3}{8}$	150
$4 \times 1 \frac{1}{4}$	$3 \frac{1}{1} \frac{5}{6}$	$8 \frac{3}{4} \times 1 \frac{5}{8}$	$\frac{3}{8}$	171
4×1	$4 \frac{3}{16}$	$8 \frac{3}{4} \times 1 \frac{3}{8}$	3	167
4×1	$4{ }_{1}^{7}$	$9 \frac{1}{4} \times 1{ }^{\frac{3}{8}}$	$\frac{3}{8}$	158
4×1	$4 \frac{1}{1} \frac{5}{6}$	$92 \times 1{ }_{2}^{1}$	$\frac{3}{8}$	168
$4 \times 1 \frac{1}{16}$	$5 \frac{3}{16}$	$10 \times 1 \frac{7}{16}$	$\frac{3}{8}$	97
$4 \frac{1}{2} \times 1 \frac{1}{2}$	$3 \frac{7}{16}$	$9 \times 1 \frac{7}{8}$	$\frac{3}{8}$	149
$4 \frac{1}{2} \times \frac{3}{4}$	$31 \frac{1}{1} \frac{5}{6}$	$9 \frac{1}{2} \times 1{ }^{1}$	$\frac{3}{8}$	170
$4 \frac{1}{2} \times \mathrm{I}^{\frac{1}{4}}$	$4 \frac{1}{1} \frac{1}{6}$	$10 \times 1 \frac{5}{8}$	$\frac{3}{8}$	151
$4{ }_{2}^{1} \times \mathrm{I}_{4}^{1}$	$5 \frac{7}{16}$	$10 \frac{1}{2} \times 1 \frac{5}{8}$	$\frac{3}{8}$	62
5×2	$3 \frac{11}{1}$	$9 \frac{1}{2} \times 2 \frac{1}{2}$	$\frac{1}{2}$	194
5×1	$4 \frac{3}{16}$	$10 \times 1 \frac{1}{0}$	$\frac{1}{2}$	162
5×2	$4 \frac{3}{16}$	$10 \times 2 \frac{1}{2}$	1	161

410 WALNUT ST., PHILADELPHIA.

LIST OF
 DIE-FORGED EYES ON FLAT BARS.

SIZE OF BAR.	Diameter of Pin.	SIZE OF HEAD.	Head Thicker than Bar.	DIE No.
Inches.		Inches.		
5×1	$4 \frac{11}{1}$	$\mathrm{IO}_{2}^{1} \times \mathrm{I} \frac{1}{2}$	$\frac{1}{2}$	164
5×2	$4 \frac{1}{1} \frac{1}{6}$	${ }_{10}^{1} \times 2{ }_{2}^{1}$	$\frac{1}{2}$	163
$5 \times 1 \frac{3}{8}$	$5{ }^{\frac{3}{6}}$	II $\times 1 \frac{7}{8}$	$\frac{1}{2}$	91
$5 \times 1 \frac{5}{8}$	$5 \frac{11}{1}$	$\mathrm{II}_{1}^{1} \times 2{ }^{\frac{1}{8}}$	$\frac{1}{2}$	166
5×2	$5 \frac{1}{1} \frac{1}{6}$	$111 \frac{1}{2} \times 2 \frac{1}{2}$	$\frac{1}{2}$	165
$5 \times 1 \frac{3}{4}$	$6 \frac{3}{16}$	$12 \times 2{ }_{4}^{1}$	$\frac{1}{2}$	93
$5 \times 1 \frac{3}{4}$	$6 \frac{1}{1} \frac{1}{6}$	$12 \frac{1}{2} \times 2 \frac{1}{4}$	$\frac{1}{2}$	71
$6 \times 1 \frac{3}{4}$	$4 \frac{9}{16}$	$11 \times 2 \frac{3}{8}$	$\frac{5}{8}$	178
6×2	$4 \frac{1}{15}$	$12 \times 2 \frac{5}{8}$	$\frac{5}{8}$	173
$6 \times 2 \frac{3}{8}$	$4 \frac{1}{1} \frac{5}{6}$	12×3	${ }_{5}$	174
$6 \times 1 \frac{3}{4}$	416 $6 \frac{5}{1}$	$13 \times 2 \frac{3}{8}$	8	-68
$6 \times 1 \frac{5}{8}$	$6 \frac{1}{1} \frac{5}{6}$	$14 \times 2 \frac{1}{4}$	$\frac{5}{8}$	I 79

Dies for flat bars may be used for bars that are thicker or thinner than sizes specified.

The thickness of a bar should never be less than onefourth of its width nor more than one-half.

UPSET SCREW ENDS ON ROUND BARS.

$\begin{gathered} \text { Diameter } \\ \text { of } \\ \text { Bars. } \end{gathered}$	$\begin{array}{\|l} \text { Diameter } \\ \text { of of } \end{array}$	$\begin{aligned} & \text { Leng:th } \\ & \text { of } \\ & \text { opsets. } \end{aligned}$	Threads per Inch.	$\begin{array}{\|c} \text { Diameter } \\ \text { of } \\ \text { Bars. } \end{array}$	$\begin{array}{\|l} \text { Diameter } \\ \text { of } \\ \text { Upsets. } \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { Opsets. } \end{aligned}$	Threads per Inch.
Inches.	Inches.	Inches.		Inches.	Inches.	Inclies.	
$\frac{5}{8}$	$\frac{3}{4}$	$2 \frac{1}{2}$	10	$1 \frac{7}{8}$	$2 \frac{1}{4}$	7	4
4	4	$2 \frac{3}{4}$	8		$2{ }^{\frac{3}{8}}$	712	4
$\frac{7}{8}$	$1 \frac{1}{8}$	3	7	$2 \frac{1}{8}$	$2 \frac{1}{2}$	8	4
1	I_{4}^{1}	$3{ }^{\frac{1}{2}}$	7	$2{ }_{4}^{1}$	$2{ }^{2}$	8	4
${ }_{\frac{1}{8}}^{1}$	I $\frac{3}{8}$	4	6	$2 \frac{3}{8}$	$2 \frac{3}{4}$	$8 \frac{1}{2}$	$3 \frac{1}{2}$
${ }_{1}^{1}$	$1{ }^{\frac{1}{2}}$	$4 \frac{1}{2}$	6	$2 \frac{1}{2}$	$2 \frac{7}{8}$	9	$3{ }^{\frac{1}{2}}$
${ }^{1} \frac{3}{8}$	${ }_{1} \frac{3}{4}$	5	5	$2 \frac{5}{8}$	3	9	$3{ }^{\frac{1}{2}}$
$1{ }^{1}$	$1{ }^{\frac{7}{8}}$	$5^{\frac{1}{2}}$	4	$2 \frac{3}{4}$	$3 \frac{1}{8}$	$9 \frac{1}{2}$	$3 \frac{1}{2}$
15	2	6	$4 \frac{1}{2}$	$2 \frac{7}{8}$	$3 \frac{3}{8}$	$9{ }^{\frac{1}{2}}$	$3{ }^{\frac{1}{4}}$
$1 \frac{3}{4}$	$2 \frac{1}{8}$	$6 \frac{1}{2}$	$4 \frac{1}{2}$	3	$3{ }^{\frac{1}{2}}$	10	$3{ }^{\frac{1}{4}}$

THE PHCENIX IRON COMPANY,

GENERAL FORMULÆ EXPLANATORY OF THE FOLLOWING TABLES AND THEIR APPLICATION.

Let A represent the area of cross section in square inches.
Let I represent the moment of inertia of A about an axis passing through its centre of gravity.

Let d represent the distance, in inches, of the most remote fibre from the axis for I.

Let $r=\left(\frac{1}{A}\right)^{1 / 2}$ represent the radius of gyration of the section A.

All the preceding quantities are given in the following tables for the various sections of beams, channels, angles, etc.

Let M represent the greatest bending moment, in inchpounds, for any loading or span.

Let l represent the span in feet.
With the load W pounds at the centre of the span l:-
$\mathrm{M}=3 \mathrm{~W} l$ for ends of beam simply supported.
$\mathrm{M}=\left\{\begin{array}{c}15 \mathrm{~W} \\ 8 \\ -\frac{9}{4} \mathrm{~W} \\ \hline\end{array}\right\}$ for one end simply supported and the other fixed.
$\mathrm{M}=\left\{\begin{array}{ccc}\frac{3}{2} & \mathrm{~W} & l \\ -\frac{3}{2} & \mathrm{~W} & l\end{array}\right\}$ for both ends of beam fixed.
With the uniform load of wounds per lineal foot of span:-
$\mathrm{M}=\frac{3}{2} w l^{2}$ for ends of beam simply supported.
$\mathrm{M}=\left\{\begin{array}{c}\frac{27}{3} w l^{2} \\ -\frac{3}{2} w l^{2}\end{array}\right\}$ for one end simply supported and the other fixed.
$\mathrm{M}=\left\{\begin{array}{c}\frac{1}{2} w l^{2} \\ -w l^{2}\end{array}\right\}$ for both ends of beam fixed.
The preceding negative values belong to points of support.
Let K represent the greatest stress in pounds per square inch,-i.e., the stress in the most remote fibre.

410 WALNUT ST., PHILADELPHIA.

Then $\mathrm{M}=\frac{\mathrm{K} \mathrm{I}}{d}$.
Or, $\mathrm{K}=\frac{\mathrm{M} d}{\mathrm{I}}$
If r is known, as it sometimes may be,

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{M} d}{\mathrm{~K} r^{2}} \tag{3}
\end{equation*}
$$

Let D represent the greatest deflection in inches.
I.et E represent the coefficient of elasticity in pounds per square inch. Then

W at span centre. Uniform load.

$\mathrm{D}={ }^{2} 6 \frac{\mathrm{~W} l 3}{\mathrm{EI}} \ldots \ldots 22.5 \frac{w l 4}{\mathrm{E} \mathrm{I}}$ for supported ends.
$\mathrm{D}=17.1 \mathrm{I} \frac{\mathrm{W} / 3}{\mathrm{EI}} \cdots \cdots \cdot 9 \cdot 366 \frac{w l 4}{\mathrm{E} \mathrm{I}}$ for one supported and one fixed end.
$\mathrm{D}=9 \frac{\mathrm{~W} l 3}{\mathrm{EI}} \cdots \cdots \cdot 4.5 \frac{w l 4}{\mathrm{E} I}$ for both ends fixed.
For a circular section $\mathrm{I}=\frac{\pi \mathrm{R}^{4}}{4}$ and $d=\mathrm{R}$ (the radius).
Hence, $\mathrm{M}=0.7854 \mathrm{~K} \mathrm{R} 3$. (4).
Eqs. (1), (2), (3), and (4) are of great practical value. The values in table on page 58 are computed from Eq. (4), with K equal to $15,000,18,000$, and 20,000 .

RIVET BEARING AND SHEARING.

Let S represent the shearing resistance in pounds per square inch.

Let p represent the bearing pressure in pounds per square inch.

Let (2 R) represent the rivet diameter in inches.
Let t represent the thickness of plate in inches.
Then, Shearing resistance of rivet $=\pi R^{2} S \quad$. (5).
Bearing resistance of rivet $=2 \mathrm{R} p t \quad$. (6).
The values of Eqs. (5) and (6) for $S=7500$, and $p=$ 12,000 and 15,000 are given for various values of (2R) and t on page 59 .

THE PHCENIX IRON COMPANY,

MAXIMUM BENDING MOMENTS TO BE ALLOWED ON PINS FOR FIBRE STRAINS OF 15,000 , 18,000, AND 20,000 POUNDS.

Diam. Pin. Inches	BENDING MOMENTS.			$\begin{aligned} & \text { Diam. } \\ & \text { of } \\ & \text { Pin. } \\ & \text { Inches. } \end{aligned}$	BENDING MOMENTS.		
	$S=15,000$	$S=18,000$	$S=20,000$		$S=15,000$	$S=18,000$	$S=20,000$
1	1,470	1,770	1,960	$3 \frac{1}{1}$	66,580	79,900	88,770
$\mathrm{I}_{1} \frac{1}{16}$	1,770	2,120	2,350	$3 \frac{5}{8}$	70,140	84,170	93,520
$1 \frac{1}{8}$	2,100	2,520	2,800	$3{ }^{\frac{11}{16}}$	73,840	88,600	98,450
I $\frac{3}{16}$	2.470	2,960	3,290	$3{ }^{\frac{3}{4}}$	77,660	93,190	103,550
11	2,880	3,450	3,830	31	81 600	97,920	108,800
I ${ }_{1}{ }^{5}$	3,330	4,000	4.440	38	85,690	102,820	II4,250
$1 \frac{3}{8}$	3.830	4,590	5,100		89,900	107,880	119,870
I $\frac{7}{16}$	4,370	5,250	5.830		94,240	II3,090	125,660
$1 \frac{1}{2}$	4.970	5960	6.630	$4 \frac{1}{16}$	98.720	II8,460	I31,620
$\mathrm{I}_{15}{ }^{9} 6$	5.620	6,740	7,490	$4 \frac{1}{8}$	103.370	I 24.040	I37,820
15	6,320	7,580	8,420	$4 \frac{3}{16}$	108.130	129,760	144,170
I 1	7,080	8,490	9,430	$4 \frac{1}{4}$	113,040	I 35,650	150,720
13	7,890	9,470	10.520	$4 \frac{5}{16}$	118,100	I41,730	157,470
11	8,770	10,520	II 690	$4 \frac{3}{8}$	123.320	147,980	164,420
17	9710	II,650	12,940	$4 \frac{7}{16}$	128,680	154,420	171,570
${ }_{1}^{1}$	10,710	12,850	I4,280	$4 \frac{1}{2}$	I34,190	161,030	178.920
2	II,780	14,140	15,710	$4 \frac{9}{16}$	I39,860	167,830	186,480
$2 \frac{1}{16}$	12,920	I5,500	17,220	48	I 45,690	174.820	194,250
$2 \frac{1}{8}$	14130	16,960	18,840	$4 \frac{11}{1} \frac{1}{6}$	151,670	182,000	202,220
$2 \frac{3}{16}$	15.410	18,500	20,550	$4{ }^{\frac{1}{4}}$	157,820	189'380	210,450
$2 \frac{1}{4}$	16,770	20,130	22,360	$4 \frac{1}{13}$	164,140	196,960	218,850
$2 \frac{5}{16}$	18,210	21,850	24,280	$4 \frac{7}{8}$	170,600	204,750	227,470
$2 \frac{3}{8}$	19,720	23.670	26,300	41	177.260	212.710	236,350
$2 \frac{7}{16}$	21,320	25,590	28,43 ${ }^{\text {c }}$		184,100	220,800	245,400
$2 \frac{1}{2}$	23,000	27,600	30,670	$5 \frac{1}{8}$	198,200	237,800	264.300
	2,4,780	29,730	33,040	$5{ }^{\frac{1}{4}}$	213,100	255,600	284,100
25	26,620	31,950	35,500	$5 \frac{3}{8}$	228,700	274,300	304,900
$2{ }_{1}^{11} 16$	28,580	34,300	38,110	$5 \frac{1}{2}$	245,000	294000	326700
$2{ }^{3}$	30,630	36,750	40.830	$5 \frac{5}{8}$	262.100	3I4,400	349,500
21	32,760	39.310	43680	$5 \frac{3}{4}$	280,000	336,000	373.300
$2 \frac{7}{8}$	34.980	4I.980	46,650	$5 \frac{7}{8}$	298,600	358.300	398,200
21	37,330	44,800	49,770	6	318,100	381,700	424,100
3	39.750	47,700	53,000	$6 \frac{1}{8}$	338,400	406,100	451,200
$3 \frac{1}{16}$	42,290	50,750	56,390	$6 \frac{1}{4}$	359,500	431,400	479,400
$3 \frac{1}{8}$	44,940	53,930	59,920	$6 \frac{3}{8}$	381,500	457,830	508.700
$3 \frac{3}{16}$	47,690	57,230	63,590	$6 \frac{1}{2}$	404,400	485.300	539,200
31	50,550	60,660	67,400	65	428,200	513,900	570,900
$3 \frac{5}{16}$	53.520	64230	71,370	63	452900	543,300	603,900
$3{ }^{\frac{3}{8}}$	56,600	67,930	75,470	67	478,500	574,200	638,000
$3 \frac{7}{16}$	59,810	71,780	79.750	7	505,100	606,100	673,500
$3 \frac{1}{2}$	63,130	75,760	84180				

410 WALNUT ST., PHILADELPHIA.

		BEARING			VALUE	DIPFERENT THICKNESSES OF PLATE.						
$\frac{1}{4}^{\prime \prime}$	$\frac{5}{16}^{\prime \prime}$	$\frac{3}{8}^{\prime \prime}$	$\frac{7}{16}^{\prime \prime}$	$\frac{1}{2 \prime}^{\prime \prime}$	$9^{\prime \prime} 16$	$5^{\prime \prime}$ 8	$\frac{11^{\prime \prime}}{16}$	$\frac{3^{\prime \prime}}{4}$	$\frac{13^{\prime \prime}}{16}$	$\frac{711}{8}$	$\frac{15}{16}^{\prime \prime}$	$]^{\prime \prime}$
1,410												
1,120	1,400											
1,640	2,050							-				
1,310	1,640	1,970										
1,870	2,340	2,810										
1,500	1,870	2,250	2,620									
2,110	2,640	3,160	$3,690$									
1,690	2,110	2,530	2,950	3,770								
2,340	2,930	3,510	4,100									
1,870	2,340	2,810	3,280	3,750	4,220							
2,580	3,220	3,870	4,510	5,160								
2,060	2,580	3,090	3,610	4,120	4,640	5,160						
2,810	3,520	4,220	4,920	5,620	6,330							
2,250	2,810	3,370	3,940	4500	5,060	5,620	6,190					
3,050	3,810	4,570	5,330	6,090	6,860	7,620						
2,440	3,050	3,660	4,270	4,870	5,480	6,090	6,700	7,310				
3,280	4,100	4,920	5,740	6,560	7,380	8,200	9,020					
2,620	3,280	3,940	4,590	5,250	5,900	6,560	7,220	7,870	8,530			
3,520	4,390	5,270	6,150	7,030	7,910	8,790	9,670					
2,810	3,520	4,220	4,920	5,620	6,330	7,030	7,730	8,440	9,140	9,840		
3,750	4,690	5,620	6,560	7,500	8,440	9,370	10,310	11,250				
3,000	3,750	4,500	5,250	6,000	6,750	7,500	8,250	9,000	9,750	10,500	II, 250	
3,980	4,980	5,980	6,97Q	7,970	8,960	9,960	10,960	11,950	$12,950$	11, 60		
3,190	3,980	4,780	5,580	6,370	7,170	7,970	8,760	9,560	$10,360$	I 1,160	11,950	12,750
4,220	5,270	6,330	7,380	8,440	9,490	10,550	11,600	12,660	13,710	14,770		
3,370	4,220	5,060	5,900	6,750	7,590	8,440	9,280	10,120	10,970	11,810	12,650	13,500
4,450	5,570	6,680	7,790	8,910	10,020	11,130	12,250	13,360	14,470	15,590		
3,560	4,450	5,340	6,230	7,120	8,010	8,900	9,800	10,690	11,580	12,470	13,360	14,250

THE PHCENIX IRON COMPANY，

PROPERTIES OF PHENIX BEAMS．

$\begin{aligned} & \text { 亚 } \\ & \text { 号 } \\ & \text {. } \end{aligned}$		
$\begin{aligned} & \text { 暞 } \\ & \text { 关 } \end{aligned}$		人○○

410 WALNUT ST．，PHILADELPHIA．

$84 \cdot z$	$z L \cdot 0$	$91^{\prime} z$	$S_{1}{ }^{\prime} \tau$	$60 \cdot 61$	$0 \cdot \square$	S LE 0	I I ${ }^{\text {t }}$	zt	4\％${ }^{\text {¢ }}$ ¢／／9	$9 \mathcal{E}$ I
$6 \varepsilon \cdot z$	940	81＇z	$80^{\circ} \mathcal{E}$	91•Sz	S t	8 8t＊o	$\varepsilon \cdot \varsigma$	tS	－＜леәН／／9	LEI
$\varsigma_{8} \cdot \tau$	58.0	69 z	$\dagger \mathcal{E} \cdot \varsigma$	\mathcal{E} I \mathcal{E} ¢	$0 \cdot 5$	8 8t•o	SE．L	SL	$\cdots प$ ¢！T／1L	$8{ }^{\text {E }}$
ot \mathcal{E}	6L．0	to．ε	SS．t	49.99	0.5	8 8t•o	$z \cdot 4$	S．EL	＇7૫ठ！＇T／／8	$6 \mathrm{C}_{1}$
$6 S \cdot \varepsilon$	\downarrow－ 0	$o s \cdot \mathcal{E}$	SS．t	80＊101	$0 \cdot 5$	8 8 \downarrow •o	Ez•8	七8	－૫¢๐！＇／，6	oti
－廌岛										
It＇z	${ }_{15} 5^{\circ}$	$6 L \cdot 1$	68°	Lて＇II	$0 \cdot \varepsilon$	S LE．O	$s \cdot \varepsilon$	SS	－¢S⿺𠃊	t9
88 I	SLOO	LI＇z	$\varsigma \mathcal{E} \cdot \tau$	69.61	¢ \boldsymbol{z} ¢	$18^{\circ} 0$	$z \cdot t$	$z\rangle$	－7¢	E9
$¢_{\tau} \boldsymbol{z}$	4LO	ES．τ	七o \mathcal{E}	$8 S \cdot z \varepsilon$	$s \cdot b$	£ıE＊	I＇S	IS	－प ¢ ¢！／／	z9
6S z	08°	$06 \cdot$	$S_{8} \cdot \underline{C}$	LE OS	$s L \cdot t$	$8 z \varepsilon \cdot 0$	0.9	09	－Y i＇ $1 / 8$	19
$96 \cdot \tau$	t8．0	$\angle \tau \cdot \varepsilon$	t8．t	$69 \cdot \varepsilon L$	$0 \cdot 5$	$\dagger \downarrow$ ¢ 0	$6 \cdot 9$	69	－7บ	09
LLS	84.0	$z \tau \cdot \downarrow$	91． 5	$\varepsilon S^{\prime} \cdot S_{\text {I }}$	0.5	8 ¢ to°	$5 \cdot 8$	5_{8}	－7¢	
$L z \cdot t$	t $2 \cdot 0$	$\underline{z} \cdot \boldsymbol{\square}$	LIS	§L．891	0.5	$8^{8}+\cdot 0$	S． 6	S6	－पร์！	tol
јо әргячпо moxy $\mathbb{\Lambda 1 t a b x y}$ ม0 өมานәว ј0 әวu६！				－ $0.8 \mathrm{8x}$						
		sIxy expanan		 	sәqข	＇sеч		sq7		
	＊NOILYYA	0 Saiavy	＇VILYชNI	LNANOW						
－NOYI										

THE PHCENIX IRON COMPANY,
PROPERTIES OF PHENIX CHANNEL IRON.

No. of Shape.	DESIGNATION.	Weight Per Yard.	Area of Section. Sq. In.	Width of Flange. Inches.	Thickness of Web. Inches.	MOMENT OF INERTIA.		Radius Of gyration.		Distance of Centre of Gravity from Outside of Web.
						Neutral Axis Perpendicular to Web Axis at Centre.	Neutral Axis Parallel to Web through Centre of Gravity.	Neutral Axis Perpendicuıar to Web Axis at Centre.	Neutral Axis Parallel to Web through Centre of Gravity.	
124	$15^{\prime \prime}$ Heavy.	200	20.0	4.38	1.0	554.57	23.61	5.27	1.09	1.08
124	$15^{\prime \prime}$ Light.	150	15.0	4.0	0.625	449.11	18.27	$5 \cdot 47$	I.IO	
140	15" Heavy.	150	15.0	3.75	- 75	421.87	1.239	$5 \cdot 30$	0.91	0.86
140	15" Light.	I15	11.5	3.50	0.5	351.56	10.01	5.53	0.93	0.83
52	$12^{\prime \prime}$ Heavy.	150	150	3.5	1.0	235.73	8.44	3.96	0.75	0.80
52	$12^{\prime \prime}$ Light.	88	8.8	3.0	0.5	163.73	5.07	$4 \cdot 31$	0.76	0.69
141	$12^{\prime \prime}$ Heavy.	88	8.8	3.25	0.563	159.44	4.19	4.26	0.69	0.82 0.86
141	$12^{\prime \prime}$ Light.	60	6.0	3.0	0.313	12350	3.01	4.54	0.71	0.86 0.76
130	$10^{\prime \prime}$ Heavy.	III	II.I	3.0	0.875	128.61	5.26	3.40	0.69 0.69	0.76 0.66
130	$\mathrm{r}^{\prime \prime}$ Light.	75	7.5	2.63	0.5	9736	3.51	3.60	0.69 0.66	0.66 0.56
142	ıo' ${ }^{\prime \prime}$ Heavy.	60	6.0	2.63	0.438	7409	2.59	3.51 3.64	0.66 0.68	0.56 0.56
142	10" Light.	48	4.8	2.5	0.313	63.67	221	3.64 3.43	0.68 0.58	0.56 0.56
129	mo' Heavy.	75	7.5	2.43	-. 555	8817	2.49 1.97	3.43 3.58	0.58 0.59	0.56 0.53
129	10" Light.	57	5.7	2.25	- 375	73.17	1.97	3.58 3.07	0.59 0.72	0.56 0.76
53	$9{ }^{\prime \prime}$ Heavy.	100	10.0	3.06	0.813	94.27	5.24	3.07 3.28	0.72 0.73	0.76 0.70
53	$9{ }^{\prime \prime}$ Light.	70	7 o	2.75	0.5	75.29	3.69	3.28	0.73	0.70

410 WALNUT ST．，PHILADELPHIA．

○ のヘペ

[^0]THE PHCENIX IRON COMPANY,

410 WALNUT ST., PHILADELPHIA.

○ No

THE PHCENIX IRON COMPANY,

No. of Shape.	PHENIX ANGLE IRON. UNEQUAL SIDES.											
	DESIGNATION.	Weight Per Yard. Lbs.	Area of Section. Sq. In.	Thickness. Inches.	MOMENT OF INERTIA.			Radios of gyration.			DISTANCE OF CENTRE OF GRAVITY.	
					Neutral Axis Parallel to Long Side.	Neutral Axls Parallel to Short Side.	Neutral Axis Parallel to Line through Ends of Sides.	Neutral Axis Parallel to Long Side.	Neutral Axis Parallel to Short Side.	Neutral Axis Parallel to Line through ExtremSides.	From Long Side.	From Short Side.
87	$62^{\prime \prime \prime} \times 4^{\prime \prime}$ Heavy.	74.8	748	0.75	8.88	31.74	6.75	1.09	2.06	0.95	1.03	2.23
87	$6 \frac{1}{2} / \prime \times 4^{\prime \prime}$ Light.	40.7	4.07	0.406	5.38	17.61	3.60	I. 15	2.08	0.94	0.91	2.18
91	$6^{\prime \prime} \times 4^{\prime \prime}$ Heavy.	71.2	7.12	0.75	8.93	24.63	5.77	1.12	1.86	0.90	1.08	2.10
91	$6^{\prime \prime} \times 4^{\prime \prime}$ Light.	36.5	3.65	0.375	5.00	13.60	2.89	I. 17	1.93	0.89	0.97	2.00
92	$6^{\prime \prime} \times 33^{\frac{1}{\prime \prime}}$ Heavy.	56.2	5.62	0.625	5.18	20.08	3.78	0.96	I. 89	0.82	0.90	2.17
92	$6{ }^{\prime \prime} \times 3 \frac{1}{2 / \prime}$ Light.	33.8	3.38	0.375	3.38	12.59	2.11	1.00	1.93	0.79	0.82	2.11
41	$5^{\prime \prime} \times 4^{\prime \prime}$ Heavy.	53. 1	$5 \cdot 3 \mathrm{I}$	0.625	7.27	12.76	3.93	I. 17	I. 55	0.86	I. II	1.60
4I	$5^{\prime \prime} \times 4^{\prime \prime}$ Light.	31.9	3.19	0.375	4.59	8.06	2.20	1.20	1. 59	0.83	I. 04	I. 55

410 WALNUT ST., PHILADELPHIA.

$$
\times \times
$$

THE PHCENIX IRON COMPANY,
PROPERTIES OF PHEENIX TEE BARS.

No. of Shape.	Size Flange by Web.	Weight Per Yard. Lbs.	Area.Sq. In.	Thickess of Web. Inches.	Thickness of Flange. Inches.	MOMENT OF INERTIA.		Radios Of gYration.		Distance of Centre of Gravity from Top.
						Neutral Axis Parallel to Flange.	Neutral Axis Coincident with Web.	Neutral Axis Parallel to Flange.	Neutral Axis Coincident with Web.	
23	$5^{\prime \prime} \times 2_{4}^{3 \prime \prime}$	35	$3 \cdot 5$	0.563	0.5	2.21	5.24	0.79	1.22	0.77
25	$5^{\prime \prime} \times 2 \frac{3 / \prime}{\prime \prime}$	29	2.9	0.563	0.375	1.39	3.94	0.69	1.17	0.66
132	$43^{\frac{1}{3 \prime \prime}} \times 3^{\prime \prime}$	25	2.5	0.375	0.313	1.94	2.39	0. 88	0.98	0.76
46	$4^{\prime \prime} \times 33^{\frac{3}{4 \prime \prime}}$	49	4.9	0.797	0.625	6.50	3.47	1.15	0.84	1.27
85	$4^{\prime \prime} \times 2^{\prime \prime}$	16.5	1.65	0.381	0.313	0.60	1.68	0.60	1.01	0.57
45	$3^{\prime \prime} \times 3^{\frac{3}{4 \prime \prime}}$	32	3.2	0.5	0.469	4.17	I. 08	1.14	0.58	1.18
24	$3^{\prime \prime} \times 33^{\frac{1}{2} / \prime}$	30	3.0	0.438	0.438	3.14	1.01	1.02	0.58	0.98
98	$2^{\frac{1}{2}} 1 \prime \times 2 \frac{3}{4}{ }^{\prime \prime}$	18	1.8	0.359	0.375	1.26	0.50	0.84	0. 53	0.84
47	$2 \frac{1}{8}{ }^{\prime \prime} \times 1{ }^{\frac{3}{16}}{ }^{\prime \prime}$	6.5	0.65	0.297	-.188	0.86	o. 15	0.36	0.15	0.37
EQUAL SIDES.										
10I	$3{ }^{\frac{1}{2} / \prime} \times 3^{\frac{1}{2}}{ }^{\prime \prime}$	28.5	2.85	0.422	0.453				0.76	
102	$3^{\prime \prime} \times 3^{\prime \prime}$	21	2. 1	0.375	0.375	1.76	0.86	0.92	0.69	0.89
84	$2 \frac{1}{2}^{\prime \prime} \times 22^{\prime \prime} / 1$	16	1.6	0.344	0.344	0.92	0.46	0.76	0.53	0.75
103	$2^{\prime \prime} \times 2^{\prime \prime}$	9	0.9	0.25	0.25	0.35	0.17	0.20	0.14	0.62

DETAILS OF CONSTRUCTION

Wrought-Iron Work.

FaOR the convenience of Architects, Engineers, and Builders, some of the details of construction employed in wrought-iron work are given in the following pages, and the adaptations of the various shapes to structural uses will be illustrated and explained under the several heads into which the work is classified.

In the building of Floors and Roofs, it is customary to make use of Beams, Channels, Columns, and other shapes of rolled iron.

FLOORS.

In planning a floor, the first point to be determined is the load that will probably be placed upon it.

The weight of the materials composing the floor is usually termed the dead load, and the weight of the persons or stores of any kind that may be placed upon the floor is called the live load. The dead load of a fire-proof floor, made of rolled beams and four-inch brick arches, filled in above with concrete, may be taken at 70 pounds per square foot, and the live load for dwellings or offices may be assumed at 70 pounds additional, and on these assumptions the table on page 85 has been calculated. But

THE PHCENIX IRON COMPANY,

in public buildings or churches, where large crowds of persons in motion may congregate, or in warehouses where heavy goods may be stored, it is evident that the loads will have to be determined by the circumstances, and will exceed the amounts above specified.

For ordinary conditions the following total loads per square foot may be assumed as giving a safe approximation in practice :

> Dwellings or Office Buildings . . 140 pounds. Public Halls or Churches 175 "
> Warehouses 150 to 300 "

In order to support these loads with entire safety, \mathbf{I} beams of various dimensions are offered in the accompanying tables. For floors of small span the lighter beams can be economically used, but for greater spans larger beams are necessary.

That a beam should be strong enough to support a given load for a given span is not all that is requisite-it is equally important that it should be stiff enough. Rigidity prevents vibration, and the avoidance of this is of great importance, since repeated movements in the floor would injure and possibly destroy the masonry in the brick-work. It is, therefore, advisable, where circumstances permit, to consider whether deep beams placed further apart might not prove to be more economical than light beams near to each other.

For the proper spacing of beams under various loads, reference may be had to the diagram given on page 40.

Under no circumstances, however, should beams be strained beyond the limits of their elasticity; or, in other words, so strained that on the removal of the load they will not return to their original condition without set or permanent deflexion.

If a beam is required to sustain a load concentrated at the centre of the span, it must be noted that only one-half as much weight can be borne when so concentrated as could be supported if the load were uniformly distributed over the whole beam.

410 WALNUT ST., PHILADELPHIA.

The figures given in the tables for the load-bearing capacity of any beam must then be divided by 2 to ascertain the safe load concentrated at the middle of the span, and this concentrated load will cause the beam to deflect $\frac{8}{10}$ as much as would the distributed load named.

If the load is to be concentrated at any other point than the centre, then the following statement of proportion will determine the case: The weight that the beam can carry at the centre is to the weight that it can carry at any other point as the rectangle of the segments of the span at the given point is to the square of half the span. For example, supposing a $\mathbf{1 2}$-inch $\mathbf{1 2 5}$-pound beam to support with safety a central load of five tons for a span of 20 feet, what load will it carry concentrated at a point 5 feet from one wall ?

Here, 5 tons : X tons : : $5 \times 15:$ 10 $\times 10$, or $6 \frac{2}{3}$ tons.
This rule is of service in such cases as when it is required to provide proper beams in floors under heavy local loads, such as safes or vaults.

Having determined the load per square foot to be sustained, the proper beams to use may be ascertanned by reference to Table II. The coefficient of safety is placed above each beam in this table, and this divided by the clear span in feet will show the strength of the beam at this span for a distributed load in net tons of 2000 pounds. The deflexion of the beam corresponding to this load will be found in the next line, and the weight of the beam should be deducted from the safe load. For any less load uniformly distributed the deflexion will be directly proportionate to that given in the table.

To determine the strength of beams many experiments have been made, and the generally accepted theory with regard to the effect of applied loads is that which assumes a neutral axis at the centre of gravity of the cross-section of the beam, and supposes the material above this axis to be compressed while that below the axis is extended, the resistance of any element to the strains of compression or extension being directly as its distance from the neutral axis.

THE PHCENIX IRON COMPANY,

Certain general principles have been fully confirmed by experiment, such, for instance, as that in beams of equal length and breadth the strength varies directly as the square of the depth, and in beams of equal length and depth directly as the breadth.

Hence the strength of any beam may be represented by the following expression:

$$
\mathrm{W}=\frac{\text { breadth } \times \text { square of depth }}{\text { length }} \times \text { constant. }
$$

The value of the constant being dependent upon the material of the beam. This may also be written,

$$
\mathrm{W}=\frac{\operatorname{area} \times \text { depth } \times \text { constant }}{\text { length }}=\frac{\mathrm{a} \times \mathrm{d} \times \mathrm{c}}{\mathrm{~L}} .
$$

Representing the various conditions of loading, it has further been determined by experiment that the following proportions obtain for all beams

Fixed at one end and loaded at the other,

$$
W=\frac{a \times d \times c}{L} ;
$$

Fixed at one end and uniformly loaded,

$$
W=2\left(\frac{a \times d \times c}{L}\right) .
$$

Supported at both ends and centrally loaded,

$$
\mathrm{W}=4\left(\frac{\mathrm{a} \times \mathrm{d} \times \mathrm{c}}{\mathrm{~L}}\right) ;
$$

Supported at both ends and uniformly loaded,

$$
W=8\left(\frac{a \times d \times c}{L}\right) .
$$

To apply these formulæ to any given beam, it is necessary to obtain by experiment the value of the constant c , taking the average of a number of tests. One-sixth, one-fourth, or even one-third of this value may be taken as the workiner load, according to the conditions of service for which the beam may be designed. For wrought-iron rolled beams, c may be taken as 48,000 pounds, and the safe load per square inch of effective section at $\mathbf{1 2 , 0 0 0}$ pounds, or six net tons, and with this as a constant the tables showing the strength of Phœenix beams have been computed.

410 WALNUT ST., PHILADELPHIA.

By " effective section" is meant that portion of the total section which is effective in resisting the strains of tension or compression, and it is ordinarily computed by adding one-sixth of the area of the stem or web to the entire area of one flange; thus, $a+\frac{a^{\prime}}{6}$.

In this estimate of the effective section two-thirds of the area of the web have been omitted from the calculation, because of the assumption that this portion of the web lies too near to the neutral axis to assist in offering any resistance to the strains caused by a load.

The "effective depth" of a beam is the distance between the centres of gravity of its two flanges, and in Table I this effective depth has been expressed, both in feet, D, and in inches, d ; the former being required in the formula for strength, while the latter is required in the formula for deflexion.

For rolled beams, under the equally distributed loads of floors, the effective section of the lower flange is in tension and the upper flange in compression, so that if the safe load of six tons per square inch is assumed, the general formula will be

$$
\mathrm{W}=8\left(\frac{\mathrm{a} \times \mathrm{d} \times \mathrm{c}}{\mathrm{~L}}\right)=\frac{8 \mathrm{D}\left(\mathrm{a}+\frac{\mathrm{a}^{\prime}}{6}\right) 6 .}{\mathrm{L}}
$$

Now, in this formula, it is only necessary to insert the proper values for "effective depth" and "effective section" given in the table for each particular beam, in order to determine its strength for any given span. The load-factor for each beam is thus dependent upon its depth and the quantity of metal in its flanges. This load-factor, when divided by the number expressing the clear span in feet, will give as a quotient a number indicating the weight in tons that the beam will carry with safety. For the several beams, the tables show what the proper loads are that may be placed upon them for each foot of clear span.

Stiffness is a different quality from strength. A beam that may be quite strong enough to carry a given load may deflect under this load more than is desirable.

THE PHGENIX IRON COMPANY,

About one-thirtieth of an inch per foot of clear span is the usual maximum of deflexion that is permissible. Under ordinary loads this is attained when the clear span is about twenty-six times the depth of the beam, and the heavy lines in the tables show for each beam where this limit may be found.

Like the load-factor, the bending moment is dependent upon the effective depth and the effective section of the beam to which it is to be applied; the general formula for the deflexion of any beam under an equally distributed load being $\delta^{\prime}=\frac{.004 W . L^{3}}{\left(a+\frac{a^{\prime}}{6}\right) d^{2}}$.

By inserting the values proper to each beam, the results given in the following tables have been obtained. For the process of deriving this formula, see page 76 following. A close approximation to the actual deflexion at the centre, under the maximum safe load, may be obtained by dividing the square of the length of the span in feet by 62 times the depth of the beam in inches.

DEFINITION OF TERMS USED IN FORMULÆ.

$\mathrm{W}=$ Equally distributed load on any beam in net tons.
$\mathrm{L}=$ Length of clear span, expressed in feet.
$\mathrm{a}=$ Area of top, or bottom, flange, in square inches.
$a^{\prime}=$ Area of stem of beam, in square inches.
$D=$ Effective depth of beam, expressed in feet.
$\mathrm{d}=$ Effective depth of beam, expressed in inches.
$S=$ Strain per square inch of effective section $\left(a+\frac{a^{\prime}}{6}\right)$ in tons of 2000 pounds.
$\delta=$ Deflexion in inches at middle for a central load.
$\delta^{\prime}=$ Deflexion in inches at middle for a uniformly distributed load.
$\left.\begin{array}{l}\text { General formula for any I beam } \\ \text { under an equally distributed load. }\end{array}\right\} \mathrm{W}=\frac{8 \mathrm{D}\left(\mathrm{a}+\frac{\mathrm{a}^{\prime}}{6}\right) \mathrm{S}}{\mathrm{L}}$

410 WALNUT ST．，PHILADELPHIA．

TABLEI． ELEMENTS OF PHGEIX BEAMS．

		 士O
皆䓢思気空空		
	$\begin{aligned} & \stackrel{む}{ \pm} \\ & \stackrel{y}{*} \\ & \text { a } \end{aligned}$	にNo H M すo H N
＇SAHONI	＂和 10 뫃	 ナmmo
	$\begin{aligned} & \text { \% }{ }^{\circ} \mathrm{g} \\ & \text { co } \end{aligned}$	no o o o o mo momono o
		 サM MNNHさM No
潣		

THE PHCENIX IRON COMPANY,

The general formulæ for deflexions given below are taken from Professor Moseley's "Mechanics of Engineering," edited by Professor Mahan, in 1856, changing the letters which he has employed to agree with those used in this work.
Let $l=$ The clear span, in inches.
$\mathrm{E}=$ Modulus of elasticity $=24,000,000$ pounds $=12,000$ tons.
$\mathrm{I}=$ Moment of inertia for the several forms.
$\delta=$ Deflexion at middle, in inches.
$\mathrm{W}=$ Load, in tons, producing deflexion.
$\mathrm{a}=$ Area, and $\mathrm{d}=$ depth of beam, in inches.
Then, for a beam fixed at one end and loaded at the other,

$$
\delta=\frac{\mathrm{W} l^{3}}{3 \mathrm{E} \mathrm{I}}
$$

For a beam fixed at one end and uniformly loaded,

$$
\delta=\frac{\mathrm{W} l^{3}}{8 \mathrm{E} \mathrm{I}}
$$

For a beam supported at both ends and loaded at the centre,

$$
\delta=\frac{\mathrm{W} l^{3}}{4^{8} \mathrm{E} \mathrm{I}}
$$

For a beam supported at both ends and uniformly loaded,

$$
\delta=5 / 8 \times \frac{\mathrm{W} l^{3}}{48 \mathrm{E} \mathrm{I}}
$$

For the several sections of beams the value of I will be as follows :
1.

4.
$\mathrm{I}=.7854\left(\mathrm{r}^{4}-\mathrm{r}^{\prime 4}\right)$
.

3.

6. ${ }^{\text {and }}$

By substituting, in formula 6, the effective areas of flange and stem,

$$
I=\frac{d^{2}}{I_{2}}\left(6 a+a^{\prime}\right)
$$

Then, for shape 6, supported at both ends and loaded at the centre,

$$
\delta=\frac{W l^{2}}{48 \times 12,000 \times \frac{\mathrm{d}^{2}}{12}\left(6 a+\mathrm{a}^{\prime}\right)}
$$

Substituting ${ }^{1728} \mathrm{~L}^{3}$ for l^{3}, to express the length of span in feet instead of inches, we have:

$$
\delta=\frac{W L^{3}}{27.78\left(6 a+a^{\prime}\right) d^{2}}-\frac{.036 W L^{3}}{\left(6 a+a^{\prime}\right) d^{2}}=\frac{.006 W^{3} L^{3}}{\left(a+\frac{a^{\prime}}{6}\right) d^{2}}
$$

And for shape 6 , supported at both ends and uniformly loaded,

$$
\delta=\frac{.004 \mathrm{~W} \mathrm{~L}^{3}}{\left(a+\frac{a^{\prime}}{6}\right) \mathrm{d}^{2}}
$$

In this form the formula for deflexion will be found in the table of beams, Table I.

TABLES OF BEAMS,

SHOWING THE PROPER SIZES FOR
Varying Conditions of Loading and Spacing,

WITH THE CORRESPONDING

DEFLEXIONS UNDER THE SAFE LOADS.

THE PHCENIX IRON COMPANY,

TABエヨ II. Comparative Strength and Stiffness

OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE
PHOENIX IRON COMPANY, FOR
Sustaining, with entire safety, a Uniformly Distributed Load.

	$\begin{gathered} 1 \\ \mathbf{1} 5^{\prime \prime} \\ 200 \mathrm{Lbs} . \\ \mathrm{W}=\frac{410}{\mathrm{~L}} \end{gathered}$								
10	41.0	$.116$	667	30.2	II 14	500	24.8	" 1112	417
11	37.2	. 140	733	27.4	. 138	550	22.5	. 135	458
12	34.2	. 167	800	25.2	. 154	600	2 C .7	. 162	500
13	31.6	. 196	867	23.2	. 82	650	19.0	. 189	542
14	29.3	. 227	933	21.6	. 212	700	17.7	. 219	583
15	27.4	. 261	1000	20.0	. 254	750	16.6	. 253	625
16	25.6	. 296	1067	18.9	. 289	800	15.5	. 287	667
17	24.1	. 334	1133	17.8	. 327	850	14.6	. 324	708
18	22.8	. 376	1200	16.8	. 367	900	13.8	. 364	750
19	21.6	. 419	I267	15.9	. 410	950	13.0	. 403	792
20	20.5	. 463	1333	15.1	. 455	1000	I 2.4	. 449	833
21	19.5	. 510	1400	14.4	. 502	1050	I 1.8	. 494	875
22	18.6	. 560	1467	13.7	. 551	I Ioc	II 1.2	. 539	917
23	17.8	. 612	1533	13.1	. 602	I 150	10.7	. 589	95^{8}
24	17.1	. 667	1600	12.6	. 656	1200	10.3	. 644	1000
25	16.4	. 725	1667	12.1	. 712	1250	9.9	. 699	1042
26	15.8	.785	1733	I I 1.6	. 769	I 300	$9 \cdot 5$. 755	1083
27	15.2	. 846	1800	11.2	. 828	I 350	9.2	. 819	1125
28	14.6	. 906	1867	10.8	. 889	1400	8.9	. 884	1167
29	14.1	. 972	1933	10.4	. 942	1450	8.6	. 966	1208
30	13.7	I.040,	2000	10.0	1.017	1500	8.3	I.CI4	1250

410 WALNUT ST., PHILADELPHIA.

TABIE II.
 Comparative Strength and Stiffness
 OF THE
 DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BX THE
PHGENIX IRON COMPANY, FOR

Sustaining, with entire safety, a Uniformly Distributed Load.

$\begin{gathered} 55 \\ \mathbf{1} \mathbf{Z}^{\prime \prime} \\ 170 \text { Lbs. } \\ \mathrm{W}=\frac{299^{-}}{\mathrm{L}^{-}} \end{gathered}$			$\begin{gathered} 57 \\ \mathbf{1 2} \mathbf{Z}^{\prime \prime} \\ 125 \mathrm{Lbs} . \\ \mathrm{W}=\frac{208}{\mathrm{~L}} \end{gathered}$			$\begin{gathered} 139 \\ \mathbf{1} \mathbf{Z}^{\prime \prime} \\ 96 \mathrm{Lbs} . \\ \mathrm{W}=\frac{156}{\mathrm{~L}} \end{gathered}$			
29.2	. 147	567	20.8	. 144	41	15.6	. 140	320	10
26.6	. 177	623	18.8	. 174	458	14.2	. 170	352	11
24.3	. 210	680	17.3	. 207	500	13.0	. 202	384	12
22.4	. 246	737	16.0	. 243	542	12.0	. 237	416	13
20.9	. 286	793	14.9	. 282	583	II.1	. 252	448	14
19.4	. 328	850	13.8	. 325	625	10.4	. 316	480	15
18.3	- 374	907	13.0	. 360	667	9.7	-351	512	16
17.2	. 423	963	12.2	. 408	708	9.2	. 407	544	17
16.2	- 475	1020	II. 5	. 459	750	8.7	. 457	576	18
15.4	. 530	1077	10.9	.513	792	8.2	. 537	608	19
14.6	. 587	II33	10.4	. 578	833	7.8	. 562	640	20
13.9	. 648	1190	9.9	. 636	875	7.4	. 617	672	21
13.3	. 711	1247	9.4	. 698	917	7.1	. 685	704	22
12.7	. 777	1303	9.0	. 763	958	6.8	. 744	736	23
12.2	. 846	1360	8.7	. 832	1000	6.5	. 809	768	24
11.7	. 918	1417	8.3	. 903	1042	6.2	. 872	800	25
11.2	. 992	1473	8.0	. 997	1083	6.0	. 950	832	26
10.8	1.068	1530	7.7	I. 053	1125	5.7	I.OIO	864	27
10.4	I. 147	1587	7.4	I.I3I	1167	5.5	1.087	896	28
10.0	I. 230	1643	7.1	I.2II	1208	$5 \cdot 3$	1.186	928	29
9.7	I. 314	1700	6.9	I. 294	1250	5.2	I. 265	960	30

THE PHCENIX IRON COMPANY,

TAB工区 II. Comparative Strength and Stiffness OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE
PHGENIX IRON COMPANY, FOR
Sustaining, with entire safety, a Uniformly Distribated Load.

	$\begin{gathered} 114 \\ \mathbf{1 0 1 1 / 2 ^ { \prime \prime }} \\ 135 \mathrm{Lbs} . \\ \mathrm{W}=\frac{178}{\mathrm{~L}} \end{gathered}$			$\begin{gathered} 58 \\ \mathbf{1 0} \mathbf{O}^{1 / 2 \prime \prime} \\ 105 \mathrm{Lbs} . \\ W=\frac{155}{\mathrm{~L}} \end{gathered}$			$\begin{gathered} 131 \\ \mathbf{1} \mathbf{O}_{1 / 2 \prime \prime}^{\prime \prime} \\ 90 \mathrm{Lbs} . \\ \mathrm{W}=\frac{133}{\mathrm{~L}} \end{gathered}$		
		"			"			"	
10	17.8	. 149	450	I 5.5	. 164	350	13.3	. 162	300
1 I	16.2	. 180	495	14.0	. 197	385	12.1	. 197	3.30
12	14.8	. 214	540	12.9	. 236	420	II.O	.232	360
13	13.7	. 251	585	11.8	. 278	455	10.2	. 274	390
14	12.7	. 291	630	II.I	. 322	490	9.5	. 318	420
15	I 1.8	. 333	675	10.2	. 364	525	8.8	. 363	450
16	II.I	. 380	720	9.7	. 414	560	8.3	. 415	480
17	10.5	. 431	765	9.1	. 470	595	7.8	. 468	510
18	9.9	. 481	810	8.6	. 528	630	$7 \cdot 4$. 527	540
19	$9 \cdot 3$. 533	855	8.1	. 589	665	7.0	. 587	570
20	8.9	. 595	900	7.7	. 652	700	6.6	. 645	600
21	8.5	. 658	945	$7 \cdot 3$. 719	735	6.3	. 713	630
22	8. I	. 721	990	7.0	. 788	770	6.0	. 781	660
23	$7 \cdot 7$. 784	1035	6.7	. 862	805	$5 \cdot 7$. 848	690
24	7.4	. 856	1080	6.5	. 941	840	$5 \cdot 5$. 930	720
25	7.1	. 928	1125	6.2	1.025	875	$5 \cdot 3$	1.013	750
26	6.8	1.00	1170	5.9	I. 105	910	5.1	1.096	780
27	6.6	I. 08	1215	5.7	I. 187	945	4.9	I. 179	810
28	6.3	I. 16	1260	$5 \cdot 5$	1.271	980	4.7	I. 262	840
29	6.1	1.24	1305	$5 \cdot 3$	1. 360	IOI 5	4.6	I. 372	870
30	5.9	I. 33	1350	5.I	1. 455	1050	4.4	1.453	900

410 WALNUT ST., PHILADELPHIA.

TAB工E II.
 Comparative Strength and Stiffness
 of the
 DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

made by the
PHGENIX IRON COMPANY, FOR
Sustaining, with entire safety, a Uniformly Distributed Load,

	$\begin{gathered} 4 \\ \mathbf{9}^{\prime \prime} \\ 150 \mathrm{Ibs} . \\ \mathrm{W}=-\frac{197}{\mathrm{~L}} \end{gathered}$			$\begin{gathered} 5 \\ \mathbf{9}^{\prime \prime} \\ 84 \mathrm{Lbs} . \\ \mathrm{W}=\frac{108}{\mathrm{~L}} \end{gathered}$			$\begin{gathered} 6 \\ \mathbf{9}^{\prime \prime} \\ 70 \mathrm{Lbs} . \\ \mathrm{W}=-9^{92} \\ \hline \end{gathered}$		
10	19.7	" 203	500	10.8	. 192	280		"	
11	17.8	. 243	550	9.8	. 231	308	8.4	. 231	256
12	16.4	. 296	600	9.0	. 276	336	7.7	. 275	280
13	15.2	. 347	650	8.3	. 324	364	7.0	. 318	303
14.	14.1	. 402	700	$7 \cdot 7$. 376	392	6.7	.380	326
I 5	13.2	. 459	750	7.2	. 432	420	6.2	. 432	350
16	12.3	. 530	800	6.7	. 488	448	$5 \cdot 7$. 448	373
17	I 1.6	. 585	850	6.3	. 550	476	$5 \cdot 4$. 548	396
18	10.9	. 654	900	6.0	. 622	504	5.1	. 615	420
19	10.3	. 737	950	$5 \cdot 7$. 695	532	4.8	. 690	443
20	9.8	. 807	1000	5.4	. 768	560	4.6	.76I	466
21	$9 \cdot 3$. 89 I	1050	5.I	. 839	588	4.4	. 842	490
22	8.9	. 980	1100	4.9	. 927	616	4.2	. 925	513
23	8.5	1.07	II 50	4.7	I.OI	644	4.0	1.01	536
24	8.2	I.17	1200	$4 \cdot 5$	1.10	672	3.8	1.08	560
25	7.9	1.27	1250	$4 \cdot 3$	I.19	700	3.6	1.16	583
26	7.6	1.38	1300	4.1	1.27	728	$3 \cdot 5$	1.27	606
27	$7 \cdot 3$	I. 48	1350	3.9	I. 36	756	3.4	1.38	630
28	7.0	I. 59	1400	3.8	I. 48	784	$3 \cdot 3$	I. 49	653
29	6.8	1.70	1450	3.7	1.60	812	3.2	1.60	676
30	6.6	I. 83	1500	3.6	I. 73	840	3.1	1.73	700

THE PHCENIX IRON COMPANY,

IABエ区 II.
 Comparative Strength and Stiffness

OF THE

DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,

MADE BY THE
PHCENIX IRON COMPANY, FOR
Sustaining, with entire safety, a Uniformly Distribated Load,

$\begin{gathered} 113 \\ 8^{\prime \prime} \\ 81 \mathrm{Lbs} . \\ \mathrm{W}=\frac{94}{\mathrm{~L}} \end{gathered}$			$\begin{gathered} 59 \\ \mathbf{8}^{\prime \prime} \\ 65 \mathrm{Lbs} . \\ \mathrm{W}=\frac{-74}{\mathrm{~L}} \end{gathered}$			$\begin{gathered} 112 \\ 7^{\prime \prime} \\ 69 \mathrm{Lbs} . \\ \mathrm{W}=\frac{7^{2}}{\mathrm{~L}} \end{gathered}$			
		Wt. of Beam, in Lbs.							
	"			"			"		
9.4	. 215	270	7.4	. 215	216	7.2	. 252	230	10
8.5	. 258	297	6.8	. 264	238	6.5	. 303	253	I I
7.8	. 308	324	6.2	. 312	260	6.0	. 363	276	12
7.2	. 361	351	5.7	. 365	282	$5 \cdot 5$. 424	299	13
6.7	. 420	378	$5 \cdot 3$. 424	303	5.1	.491	322	14
6.2	. 478	405	4.9	. 475	325	4.8	. 568	345	15
5.9	. 546	43^{2}	4.6	. 549	347	4.5	. 645	368	16
$5 \cdot 5$.617	459	$4 \cdot 3$. 616	368	4.2	. 724	391	17
5.2	. 693	486	4.1	. 697	390	4.0	. 818	414	18
5.0	. 783	513	3.9	. 780	412	3.8	.914	437	19
4.7	. 859	540	3.7	. 863	433	3.6	1.01	460	20
4.5	. 952	567	3.5	. 946	455	3.4	I. 10	483	21
4.2	1.02	594	3.4	1.05	477	3.2	I. 19	506	22
4.I	1.14	621	3.2	I. 13	498	3.1	1.32	529	23
3.9	1.23	648	3.1	1.25	520	3.0	1.45	552	24
3.7	I. 32	675	2.9	1.32	542	2.9	I. 59	575	25
3.6	1. 44	702	2.8	1.43	563	2.8	1.72	598	26
3.5	I. 57	729	2.7	I. 55	585	2.7	1.86	621	27
$3 \cdot 3$	I. 65	756	2.6	I. 66	607	2.6	2.00	644	28
3.2	1.78	783	2.5	1.77	628	2.5	2.14	667	29
3.1	1.91	810	2.4	1.88	650	2.4	2.27	690	30

410 WALNUT ST．，PHILADELPHIA．

IAB工区 エエ．
 Comparative Strength and Stiffness

OF THE

DIFFERENT SECTIONS OF WROUGHT－IRON BEAMS，

MADE BY THE

PHOENIX IRON COMPANY， FOR

Sustaining，with entire safety，a Uniformly Distribated Load．

	$7$$7^{\prime \prime}$ 55 Lbs．$W=\frac{54}{L}$			$\begin{gathered} 111 \\ \mathbf{6}^{\prime \prime} \\ 50 \mathrm{Lbs} . \\ \mathrm{W}=\frac{45}{\mathrm{~L}} \end{gathered}$			$\begin{gathered} 8 \\ \mathbf{6}^{\prime \prime} \\ 40 \mathrm{Lbs} . \\ \mathrm{W}=\begin{array}{c} 35 \\ \mathrm{~L} \end{array} \end{gathered}$		
10 11 I 2	5.4 4.8 4.5	11 .248 .293 .357	183 201 220	4.5 4.1 3.7	11 .290 .352 .412	167 183 200	3.5 3.2 2.9	11 .286 .348 .410	133 146 160
13	4.2	． 423	238	$3 \cdot 4$	． 48 I	217	2.7	． 486	I73
14	3.9	－49I	256	3.2	． 566	233	2.5	． 562	I 86
15	3.6	． 558	275	3.0	． 653	250	2.3	． 636	200
16	3.4	． 651	293	2.8	． 740	267	2.2	． 738	213
17	3.2	． 722	3 II	2.6	． 824	283	2.0	． 805	226
18	3.0	． 803	330	2.5	． 940	300	1.9	． 907	240
19	2.8	． 882	348	2.4	I． 06	317	1.8	I．OI	253
20	2.7	． 992	366	2.2	I． 13	333	1.7	I．II	266
21	2.5	1.06	385	2.1	1.25	350	1.6	I． 21	280
22	2.4	1.17	403	2.0	I． 37	367	I． 6	I． 39	293
23	2.3	1.28	42 I	1.9	I． 49	383	1.5	I． 49	306
24	2.2	1.39	440	1.8	1.60	400	I． 5	I． 58	320
25	2.1	1.50	458	1.8	I． 8 I	417	I． 4	1.79	333
26	2.1	1.69	476	1.7	1.92	433	1.3	1．87	346
27	2.0	1.80	495	1.6	2.02	450	1.3	2.09	360
28	1.9	1.90	513	1.6	2.26	467	1.2	2.15	373
29	1.8	2.01	53 I	1.5	2.36	483	1.2	2.39	386
30	1.8	2.23	550	I． 5	2.61	500	I．I	2.43	400

THE PHGENIX IRON COMPANY,

TABエ耳 II.
Comparative Strength and Stiffness of the
DIFFERENT SECTIONS OF WROUGHT-IRON BEAMS,
made by the
PHCENIX IRON COMPANY,
FOR
Sustaining, with entire safety, a Uniformly Distribated Load.

410 WALNUT ST., PHILADELPHIA.

PHENIX BEAMS.

THEIR ADAPTATION AND DUTY AS FLOORING JOISTS.

Clear Span.	$\begin{gathered} 3^{\prime} \\ \text { apart } \end{gathered}$	$31 / 2^{\prime}$ apart	$\begin{gathered} 4^{\prime} \\ \text { apart } \end{gathered}$		$\begin{gathered} 5^{\prime} \\ \text { apart } \end{gathered}$	5 $1 / 2^{\prime}$ apart	$\begin{gathered} 6^{\prime} \\ \text { apart } \end{gathered}$
io feet. Load lbs. I	$\begin{aligned} & 30 \square^{\prime} \\ & 4,200 \end{aligned}$	$\begin{aligned} & 35 \square^{\prime} \\ & 4,900 \end{aligned}$	$\begin{aligned} & 40 \square^{\prime} \\ & 5,600 \end{aligned}$	$\begin{aligned} & 45 \square^{\prime} \\ & 6,300 \end{aligned}$	$\begin{aligned} & 50 \square^{\prime} \\ & 7,000 \end{aligned}$	$\begin{gathered} 55 \square^{\prime} \\ 7,700 \\ 7 \text { or } 8^{\prime \prime} \end{gathered}$	$\begin{aligned} & 6, \square^{\prime} \\ & 8,400 \end{aligned}$
$\begin{gathered} \text { 12 feet. } \\ \text { Load lbs. } \\ \text { I } \end{gathered}$	$\begin{aligned} & 36 \square^{\prime} \\ & 5,040 \\ & 6 \text { or } \end{aligned}$	$\begin{gathered} 4^{2} \\ 5,880 \end{gathered}$	$\begin{gathered} 4^{8} \\ 6,720 \end{gathered}$	$\begin{gathered} 54 \\ 7,560 \\ 7^{\prime \prime} \end{gathered}$	$\begin{gathered} 60 \\ 8,400 \end{gathered}$	$\begin{gathered} 66 \\ 9,240 \end{gathered}$	$\begin{gathered} 7^{2} \\ 10,080 \end{gathered}$
14 feet. Load lbs. I	$\begin{aligned} & 4^{2} \square^{\prime} \\ & 5,880 \end{aligned}$ $7 \text { or }$	$\begin{gathered} 49 \\ 6,860 \\ 8^{\prime \prime} \end{gathered}$	$\begin{gathered} 56 \\ 7,840 \end{gathered}$	$\begin{gathered} 63 \\ 8,820 \\ 8 \text { or } 9^{\prime \prime} 70 \end{gathered}$	$\begin{gathered} 70 \\ 9,800 \end{gathered}$	$\begin{array}{r} 77 \\ 10,780 \\ 9^{\prime \prime} \end{array}$	$\begin{gathered} 84 \\ \mathrm{II}, 760 \\ 70 \end{gathered}$
I6 feet. Load lbs. I	$\begin{aligned} & 4^{8} \square^{\prime} \\ & 6,720 \end{aligned}$	$\begin{gathered} 56 \\ 7,840 \end{gathered}$	$\begin{gathered} 64 \\ 8,960 \\ 9^{\prime \prime} 70 \end{gathered}$	$\begin{gathered} 72 \\ 10,080 \\ 9^{\prime \prime} \end{gathered}$	$\left\|\begin{array}{c} 80 \\ 11,200 \\ 84 \end{array}\right\|$	$\left\lvert\, \begin{gathered} 88 \\ \mathbf{1 2}, 320 \\ 101 / 2^{\prime \prime} \end{gathered}\right.$	$\begin{gathered} 96 \\ 13,440 \\ =105 \end{gathered}$
18 feet. Loadlbs. I	$\left\|\begin{array}{c} 54 \square^{\prime} \\ 7,560 \\ 8 \text { or } 9^{\prime \prime} 70 \end{array}\right\|$	$\begin{gathered} 63 \\ 8,820 \end{gathered}$	$\begin{gathered} 72 \\ \text { 10,080 } \end{gathered}$	$\begin{gathered} 8 \mathrm{I} \\ \mathrm{II}, 340 \end{gathered}$	$\begin{array}{\|c} 90 \\ 12,600 \\ 101 / 2^{\prime \prime} \end{array}$	$\begin{gathered} 99 \\ 13,860 \end{gathered}$	$\begin{gathered} 108 \\ 15,120 \end{gathered}$
20 feet. Load lbs. I	$\left\|\begin{array}{cc} 60 & \square^{\prime} \\ 8,400 \\ 9^{84} \text { orio } 1 / 2 \end{array}\right\|$	$\begin{gathered} 70 \\ 9,800 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{II}, 200 \\ 101 / 2 \end{gathered}$	$\begin{aligned} & 90 \\ & 12,600 \\ & 105 \end{aligned}$	$\begin{gathered} 100 \\ 14,000 \end{gathered}$	$\begin{array}{r} 110 \\ 15,400 \\ 12^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 120 \\ 16,800 \end{gathered}$
22 feet. Load lbs. I	$\begin{aligned} & 66 \square^{\prime} \\ & 9,240 \end{aligned}$	77 10,780 $101 / 2^{\prime \prime} 105$	$\begin{gathered} 88 \\ \mathbf{1 2 , 3 2 0} \end{gathered}$	$\begin{gathered} 99 \\ 13,860 \end{gathered}$	$\begin{array}{\|c} \text { 1 } 10 \\ 15,400 \\ 12^{\prime \prime} 125 \end{array}$	$\begin{gathered} 121 \\ 16,940 \end{gathered}$	$\begin{gathered} 132 \\ 18,480 \\ 12^{\prime \prime} 170 \end{gathered}$
24 feet. Load lbs. I	$\begin{gathered} 72 \square^{\prime} \\ 10,080 \\ 101 / 2 \text { or } \end{gathered}$	$\begin{gathered} 84 \\ \mathrm{II}, 760 \\ \mathrm{I} 2^{\prime \prime} 125 \end{gathered}$	$\begin{gathered} 96 \\ 13,440 \\ 12^{\prime \prime} \end{gathered}$	$\begin{gathered} 108 \\ 15,120 \\ 125 \end{gathered}$	$\begin{array}{\|r\|} 120 \\ 16,800 \\ 12^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 132 \\ 18,480 \\ 170 \text { or } 15^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 144 \\ 20,160 \\ \prime \prime 150 \end{gathered}$
26 feet. Load lbs. I	$\left\|\begin{array}{c} 78 \square^{\prime} \\ \text { 10,928 } \\ 101 / 2 \text { or } 2 \end{array}\right\|$	$\begin{gathered} 91 \\ 12,740 \\ 12^{\prime \prime} \end{gathered}$	$\begin{gathered} 104 \\ 14,560 \\ 125 \end{gathered}$	$\begin{array}{r} 117 \\ 16,380 \\ 12^{\prime \prime} \end{array}$	$\begin{array}{\|c} 130 \\ 18,240 \\ 0 \text { or } 15^{\prime \prime} \\ \hline \end{array}$	$\begin{array}{\|c} 143 \\ 20,020 \\ 150 \end{array}$	$\begin{gathered} 156 \\ 21,840 \\ 15^{\prime \prime 150} \end{gathered}$
28 feet. Load lbs. I	$\begin{aligned} & 84^{\prime} \square \\ & 11,760 \\ & 12^{\prime \prime} 125 \text { or } \end{aligned}$	$\begin{gathered} 9^{8} \\ \mathbf{1 3}, 720 \\ 15^{\prime \prime} 150 \\ \hline \end{gathered}$	$\begin{gathered} 112 \\ 15,680 \\ 12^{\prime \prime} 170 \\ \hline \end{gathered}$	$\begin{gathered} 126 \\ 17,640 \\ 15^{\prime \prime} 150 \\ \hline \end{gathered}$	$\left.\begin{gathered} 140 \\ 19,600 \\ 15^{\prime \prime} 150 \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{gathered} 154 \\ 21,560 \\ 15^{\prime \prime} \end{gathered}\right.$	$\begin{gathered} 168 \\ 23,520 \\ 200 \end{gathered}$
30 feet. Load lbs. I	$\left\|\begin{array}{c} 90 \\ 12,600 \\ 12 \text { ori } 5^{150} \end{array}\right\|$	$\begin{gathered} 105 \\ 14,700 \\ 12^{\prime \prime} 170 \end{gathered}$			$\begin{gathered} 150 \\ 21,000 \end{gathered}$	$\begin{array}{\|c\|} \hline 165 \\ 23,100 \\ 15^{\prime \prime} 200 \\ \hline \end{array}$	$\begin{gathered} 180 \\ 25,200 \end{gathered}$

In above table the load is taken at 140 lbs . per \square foot of floor.

THE PHGENIX IRON COMPANY,

STANDARD BOLTS AND CAST SEPARATORS FOR COMPOUND BEAMS.

$\begin{gathered} \text { NUMBER } \\ \text { AND } \\ \text { SIZR OF BEAMS. } \end{gathered}$	C. to C. of Beams.	$\begin{aligned} & \text { C. to } \mathrm{C} . \\ & \text { of } \\ & \text { Bolts. } \end{aligned}$	WEIGET in LBS.		SIZES OF B0LTS.		Length of Sepa'r.	$\begin{aligned} & 0 . \text { to } 0 . \\ & \text { of } \\ & \text { Beam } \\ & \text { Flanges } \end{aligned}$
			Cast Sepa'r.	Two Bolts.	Diam.	Length.		
2 15 $5^{\prime \prime} 200$	$6^{\prime \prime}$	$9^{\prime \prime}$	19	$3{ }^{1}$	$3_{4}^{\prime \prime}$	$78^{\prime \prime} 1$	$5 \frac{3}{8}{ }^{\prime \prime}$	$11_{4}{ }^{1 /}$
2 I5 I50	$5{ }^{\frac{1}{4}}$	9	17	3	...	$6 \frac{3}{4}$	$4 \frac{3}{4}$	10
$2 \begin{array}{lll}15 & 125\end{array}$	5	9	17	3	\ldots	$6 \frac{1}{2}$	$4 \frac{5}{8}$	$9 \frac{5}{8}$
212170	6	$6 \frac{1}{2}$	15	$3^{\frac{1}{4}}$	\ldots	78	$5 \frac{3}{8}$	11 I $\frac{1}{2}$
212125	51	$6 \frac{1}{2}$	15	3	\ldots	$6 \frac{5}{8}$	$4{ }^{\frac{3}{4}}$	10
21296	5	$6 \frac{1}{2}$	15	3	\ldots	$6 \frac{3}{8}$	$4 \frac{5}{8}$	9 ${ }^{\frac{1}{2}}$
$2.10 \frac{1}{2} 135$	$5{ }^{1}$	$5 \frac{1}{2}$	11	3	\ldots	7	5	$10 \frac{1}{2}$
$210 \frac{1}{2} 105$	5	$5 \frac{1}{2}$	II	3	\ldots	$6 \cdot \frac{1}{2}$	$4 \frac{5}{8}$	93
$2 \quad 10 \frac{1}{2} \quad 90$	5	$5 \frac{1}{2}$	I I	3	\ldots	$6 \frac{1}{1}$	$4 \frac{5}{8}$	91
29150	6	$4 \frac{1}{2}$	9	$3{ }^{1}$	\ldots	$7 \frac{5}{3}$	58	11.
$2 \quad 984$	$4 \frac{1}{2}$	$4 \frac{1}{2}$	9	$2 \frac{3}{4}$	\ldots	6	41	8. $\frac{1}{2}$
970	4	$4 \frac{1}{2}$	9	$2 \frac{3}{4}$	\ldots	$5^{\frac{3}{8}}$	$3{ }_{4}^{3}$	$7 \frac{1}{2}$
8 81	5	4	8	$2 \frac{1}{4}$	$\frac{5}{8} / 1$	61	$4 \frac{5}{8}$	$9 \frac{1}{3}$
2865	$4 \frac{1}{2}$	4	8	2	...	$5{ }^{3}$	$4 \frac{1}{8}$	$8 \frac{1}{2}$
2769	$4 \frac{1}{2}$	3	7	$1{ }_{4}^{3}$	\ldots	$5^{\frac{3}{4}}$	$4 \frac{1}{8}$	$8 \frac{1}{2}$
755	4	3	7	$1{ }^{\frac{3}{4}}$	\ldots	5	$3 \frac{5}{8}$	$7 \frac{1}{2}$
650	4	3	5	$1 \frac{1}{2}$	\ldots	$5 \frac{1}{1}$	$3^{\frac{3}{4}}$	$7 \frac{1}{2}$
640	3	3	5	$1 \frac{1}{2}$	\ldots	$4 \frac{1}{8}$	23	$5^{\frac{3}{4}}$

STANDARD BRACKETS FOR BEAMS.

Size of Beam.	BRACKETS.		B0LTS.		RIVETS.		Approx
	No.	Size of \mathbf{L}	No.	Size.	No.	Size.	1 Set.
$15^{\prime \prime}$	2	$4 \times 4-10^{\prime \prime}$	6	$\frac{2}{4} \times 2^{\prime \prime}$	3	$\times 27$	26
12	2	$3 \frac{1}{2} \times 3 \frac{1}{2}-7 \frac{1}{2}$	6	- 17	3	- 21	17
10_{2}^{1}	2	$3 \frac{1}{2} \times 3 \frac{1}{2}-7 \frac{1}{2}$	6	$1{ }^{7}$	3	2 21	17
9	2	$3 \times 3-5 \frac{1}{2}$	4	$\frac{5}{8} \times 1{ }^{\frac{3}{4}}$		$\times 2 \frac{1}{4}$	9
8	2	$3 \times 3-5 \frac{1}{2}$	4	I $1 \frac{3}{4}$	2	$2 \frac{1}{4}$	9
7	2	$3 \times 3-4$	4	$\mathrm{I}^{\frac{3}{4}}$	2	$2 \frac{1}{4}$	$7 \frac{1}{2}$
6	2	$3 \times 3-4$	4	$\frac{5}{8} \times 1 \frac{3}{4}$	2	-21	$7 \frac{1}{2}$

```
410 WALNUT ST., PHILADELPHIA.
```


Fig. 5
Fig. 7

THE PHCENIX IRON COMPANY,

Cases frequently occur in which a column cannot be introduced into the building, and the girder must then be deepened and made strong enough to bear its load without such assistance. For this purpose girders are built of plate and angle irons combined in suitable form to resist the strains induced by the load in the several members, and of depths that vary to suit the special conditions of each case.

Fig. 8 shows the usual form adopted for plate girders. The ends should be further stiffened by vertical members, to resist the shearing strain on the web at the points of support, as shown on opposite page.

Box girders (as below) composed of a combination of plates with angle irons, are also frequently used, and may be built up in sections, varying according to architects' designs.

PLATE GIRDER.

LATTICE GIRDER.

THE PHCENIX IRON COMPANY,

Between the joists the spaces are filled up with brick arches, resting on the lower flanges against cast-iron or brick skew-backs.

The bricks should be moulded with a slight taper to suit the arch, and be laid in place with as little mortar as possible. Above the arch the space is filled with grouting, in which wooden strips $2^{\prime \prime} \times \mathbf{1}^{\prime \prime}$ are bedded for nailing the flooring to. The thrust of the arches is taken up by a series of tie-rods, placed in lines from 6 to 8 feet apart, and usually from $3 / 4$ to 1 inch in diameter, as shown in plan (Fig. 9), that run from beam to beam from one end of the building to the other, being anchored into each end wall with stout washers, an angle bar or channel serving as a wallplate for distributing the strain produced by the thrust of the first arch.

Instead of the brick arches corrugated iron is sometimes used to fill in the spaces. It is placed on the lower flanges of the beams and filled in above with cement in place of brickwork.

The centres for turning the arches can be suspended by iron straps hooked on the lower flange, and detachable on one side so that the frames can be shifted from point to point as the work progresses. If a flush surface is preferred for the ceiling, it may be obtained by wedging strips of pine between the beams, and tacking the laths diagonally to the under side of these, finishing with a smooth and fair surface of plastering, and thus entirely concealing the iron-work above. Hollow brick, moulded especially for this class of work, have been used to some extent in the place of solid arching, with the object of diminishing the dead weight. The cost, however, is somewhat greater than solid bricks. Latterly, also, what are called flat arches, made of hollow bricks, have been introduced, the object being to secure a flat ceiling.

410 WALNUT ST., PHILADELPHIA.

Fig. 10.

THE PHCENIX IRON COMPANY,

The use of hollow bricks and hollow composition blocks of a variety of shapes as a substitute for solid brick arches has become quite general, and illustrations of their useful application in the construction of fire-proof work are shown on the opposite page.

It is evident that the diminution of the dead load to be borne by the iron framing affords quite an advantage and permits of a more economical use of material.

The most effective method of accomplishing this result is to substitute hollow burnt-clay brick, or hollow concrete blocks, for the solid common bricks generally employed, thus reducing the dead weight of the arch by 40 to 50 per cent. The hollow brick and blocks may be used either in segmental or flat arches, according to whether a curved or flat ceiling is preferred.

Hollow blocks of burnt fire-clay, purposely made for use in flat arches, are manufactured in quantity in a number of places, and concrete blocks or artificial stone has also been employed with very satisfactory results. The voussoir blocks are cemented together with joints inclined to a common centre as in a segmental arch. The skew-backs of the flat arches take the form of the iron beams against which they rest, and each block keys with the adjacent one, no two joints being allowed to be parallel, as this would endanger the safety of a flat arch. The lower surfaces of the blocks descend about an inch below the flanges of the iron beams, and a thin tile is slipped into place to cover the iron for protection from fire. A coat of cement is then applied to the surface of the entire ceiling, and it is ready to receive any finishing decorative treatment that may be preferred. The upper level of the blocks may be carried up to the top of the iron beams, taking the place of the concrete filling sometimes employed. The iron beams will thus be entirely surrounded by the best known non-conductors of heat, brick or concrete, and will be fully protected from the action of flame, should the combustible contents of a room be accidentally burned.

For large spans a rib is formed in the hollow blocks following the curve of pressure, and this adds very materially

410 WALNUT ST., PHILADELPHIA.

FIRE PROOF CONSTRUCTION WITH IRON AND HOLLOW BRICK.

flat arch of hollow brick.

flat arch of teil hollow blocks.

FLAT ROOF BETWEEN IRON BEAMS.

POROUS LIGHT BRICK ARCHES AND BEAM PROTECTION.

to the strength of a flat arch formed of them. Such arches have frequently been tested with loads of one ton per square foot without failure, and their great strength, in combination with lightness, is of value and importance. But the blocks must be of first-class quality and skilfully placed by competent workmen to obtain the best results from them.

When segmental arches are preferred, hollow brick may, with advantage, be substituted for the ordinary solid bricks, diminishing the dead load to some extent. Suspended ceilings of hollow blocks $11 / 2$ to 2 inches thick are sometimes employed. The blocks are supported on bars of $\boldsymbol{\perp}$ and \mathbf{L} iron placed about 16 inches apart and hung from the floor beams by suitable hooks and clamps. The suspended ceiling is fire-proof in itself when coated with a covering of cement, and by means of the air space above it very thoroughly protects the floor beams from the effects of heat in the room below. Similar hollow blocks, well cemented together and bound with hoop iron about the flanges, are also used to protect box-girders from the effects of heat.

For making a finish inside the slating, and for lining Mansard roofs between the iron beams, hollow blocks 2 to 4 inches thick have been employed with excellent results. The blocks are usually cemented together and fastened to the purlins by small flat iron hooks, leaving a hollow space between the slating and the fire-proof hollow wall, the inner surface being smoothly plastered and finished.

Similar construction would be well adapted to vaults, domes, and the lining of refrigerator walls, where the nonconduction of heat is of importance. Rooms thus protected are dry and comfortable under any circumstances, being cool in summer and warm in winter. Hollow blocks are in very general use also for partitions in buildings, and when used in connection with floors of iron beams, protected by arches of the construction just described, they divide a building into a number of fire-proof compartments. If a fire originates in any one of these it is prevented from extending to the contents of the entire structure, and time is afforded for its easy extinction without risk of extensive damage by water or of injury to any part of the building itself.

Phenix Patent Wrought Iron Columns,

 and
Method of Fire-Proofing and Preparing for Smooth Finish by Wight's Patent Process.

By the use of a non-conducting and incombustible casing Phœnix columns can be made thoroughly secure from the effects of expansion caused by fire in the combustible contents of rooms. They may, by the same means, be given any desired form and
 prepared for an exterior surface finish of cement.

This cement finish may be in any desired color or may be highly polished to resemble marble. The process of protecting the columns consists in the use of terra-cotta blocks moulded to fit between the flanges of the segments, bedded in place with cement mortar, and secured by countersunk iron plates hooked over the rivet-heads of the columns. Fig. 2 is a perspective view of such a column, showing the various stages of completion.

THE PHCENIX IRON COMPANY,

COLUMNS.

Wrought-iron columns are coming into more general use in the construction of buildings, both on account of the saving of space that they afford when compared with heavy walls of masonry, and because of the great loads that are now to be provided for in large fire-proof buildings. In the latter case cast-iron columns are generally more costly, and neither so safe nor so durable in the event of fire. The Phœnix column of wrought-iron segments, circular in section, provides the maximum of strength with the minimum of weight in the column itself.

To carry a given load, it requires the employment of the least amount of metal, and, on account of the simplicity of its construction, it is the cheapest as well as the best column in the market.

Whenever Phœenix columns are employed, the interior surfaces are thoroughly painted before the segments are riveted together. Such columns have been inspected after twenty years of service, and, although they had occupied the most exposed situations, they have been found uninjured by rust and with the paint still performing its duty as a protector. To determine the value of Phœenix columns under loads, a series of tests have been made at various times, the most noteworthy, probably, being those made on the Government machine at Watertown Arsenal, Massachusetts, in 1879, upon a set of full-sized Phœenix columns, of lengths ranging from 6 diameters to 42 diameters. Twenty C columns, each of about 12 square inches sectional area, were thus tested, and from these experiments the following formulæ have been deduced, which closely correspond with

THE PHCENIX IRON COMPANY,

the actual results obtained, and show correctly the value of the form of the Phœnix column :

$$
\frac{\mathrm{P}}{\mathrm{~S}}=\frac{\begin{array}{c}
\text { Formula for } \\
\text { Square-End Bearings. }
\end{array}}{\mathrm{4} 2,000} \mathrm{I}+\left(\frac{\mathrm{I}}{50,000} \times \frac{\mathrm{l}^{2}}{\mathrm{r}^{2}}\right) \quad \mathrm{P}=\frac{\begin{array}{c}
\text { Formula for } \\
\text { Pin-End Bearings. }
\end{array}}{\left.\frac{42,000}{\mathrm{~S}}=\frac{1}{30,000} \times \frac{\mathrm{I}^{2}}{\mathrm{r}^{2}}\right)}
$$

$\frac{\mathrm{P}}{\mathrm{S}}$ represents the total load in pounds
sectional area in square inches; or, in other words, the crushing strain per square inch of section. l is the length in feet between bearings, and r is the least radius of gyration. Applying these formulæ to the several patterns of segmental columns, the table of allowable working strains per square inch of section, shown below, has been prepared; the allowable working strains being, in each case, about one-fourth of the ultimate strength of the column.

ALLOWABLE WORKING LOADS FOR PHENIX COLUMNS.

In Pounds per Square Inch of Sectional Area.
Square-End Bearings.

Length in Feet.	Col. A.	Col. B^{1}.	Col. B2.	Col. C.	Col. E.	Col. G.
10	9323	9833	10,024	10,195	10,35 I	10,4 II
12	8885	9564	9,830	10,067	10,288	10,371
14	8420	9267	9,607	9,924	10,2I 5	10,326
16	7943	8944	9,364	9,783	10,13I	10,275
18	7463	8 8́r $^{\text {¢ }}$	9,105	9,575	10,037	10,216
20	6997	8260	8,830	9,386	9,935	10,152
22	6526	7906	8,54 I	9,185	9,824	10,082
24	6090	7550	8,250	8,973	9,705	10,005
26	7201	7,955	8,755	9,580	9,926
28	6860	7,660	8,527	9,450	9,841
30	6527	7,366	8,297	9,314	9,750
32	7,075	8,070	9,170	9,654
34	7,837	9,02 I	9,555
36	7,604	8,870	9,441
38	7,375	8,717	9,34 I
40	\ldots	$\ldots .$.	7,147	8,561	9,235

THE PHCENIX IRON COMPANY，

table of Dimensions of Phenix Columns．

The dimensions given in the following table are subject to slight variations，which are unavoidable in rolling iron shapes．

The weights of columns given are those of the 4,6 ，or 8 segments，of which they are composed．The shanks of the rivets used in joining the segments together only make up the quantity of metal removed in making the holes，but the rivet－heads add from 2 to 5 per cent．to the weights given． The rivets are spaced 3,4 ，or 6 inches apart from centre to centre，and somewhat more closely at the ends than towards the centre of the column．

Any desired thickness between the minimum and maxi－ mum for any given size can be furnished．G columns have 8 segments， E columns 6 segments， $\mathrm{C}, \mathrm{B}^{2}, \mathrm{~B}^{\mathrm{r}}$ ，and A have 4 segments．

Least Radius of Gyration equals $\mathrm{D} \times \cdot 3636$ ．

$\begin{aligned} & \text { ded } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 穿 } \\ & \text { 曾 } \\ & \text { 苞 } \\ & \text { } \end{aligned}$	DIAMETERS IN INS．			ONE COLUMN．			SIZE OF RIVETS．
		$\underset{\text { Inside. }}{\stackrel{\mathrm{d}}{2}}$	$\begin{aligned} & \text { D } \\ & \text { Out- } \\ & \text { side. } \end{aligned}$	D^{11} 0ver Flanges	Area of Cross Section． Sq．Inches．	Weight per Foot in Pounds．	Least Radius of Gyration． Inches．	
A	$\frac{3}{16}$	38	4	$6 \frac{1}{16}$	3.8	12.6	I． 45	$\frac{3}{8} \times 1 \frac{1}{8}$
			$4 \frac{1}{8}$	$6 \frac{3}{16}$	4.8	16.0	I． 50	
	$\overline{1} \overline{6}$	6	$4{ }_{4}^{1}$	$6 \frac{5}{16}$	5.8	19.3	1.55	$1 \frac{3}{8}$
	$\frac{3}{8}$	6	$4 \frac{3}{8}$	$6 \frac{7}{16}$	6.8	22.6	1． 59	I $\frac{1}{2}$
\mathbf{B}^{1}		$4 \frac{13}{16}$	$5 \frac{5}{16}$	$8 \frac{1}{16}$	6.4	21.3	1.92	$\frac{1}{2} \times 1 \frac{5}{8}$
	$\frac{5}{16}$		$5{ }^{7} 6$	$8 \frac{1}{8}$	7.8	26.0	I． 96	
		＂	$5 \frac{9}{16}$	$8 \frac{1}{4}$	9.2	30.6	2.02	$1{ }^{3}$
	16	،	$5 \frac{1}{1} \frac{1}{6}$	$8 \frac{3}{8}$	10.6	$35 \cdot 3$	2.07	$\frac{7}{8}$
	10	＂	$51 \frac{3}{1} 6$	$8 \frac{7}{16}$	12.0	40.0	2.11	I $\frac{7}{8}$
	$\frac{9}{16}$	،	$5 \frac{15}{1} \frac{5}{6}$	$8 \frac{1}{2}$	13.4	44.6	2.16	2
	$\frac{5}{8}$	،	$6 \frac{1}{16}$	$8 \frac{5}{8}$	14.8	49.3	2.20	$2 \frac{1}{8}$
13^{2}		$5 \frac{15}{1}$	$6 \frac{7}{16}$	$9 \frac{1}{8}$	7.4	24.6	2.34	$\frac{1}{2} \times \mathrm{I} \frac{5}{8}$
	1.6		$6 \frac{9}{16}$	$9{ }^{\frac{1}{4}}$	9.0	30.0	2.39	I $\frac{3}{4}$
	${ }^{\frac{3}{8}}$	＇6	$6 \frac{11}{1} 6$	$9{ }^{\frac{5}{1} 6}$	10.6	$35 \cdot 3$	2.43	I $\frac{3}{4}$
	$\frac{7}{16}$	＇6	$61 \frac{1}{1} 6$	$9{ }^{\frac{3}{8}}$	12.2	40.6	2.48	I $\frac{7}{8}$
	$\frac{1}{2} \frac{1}{2}$	،	$6 \frac{1}{1} \frac{5}{6}$	$9{ }^{1}$	13.8	4.6 .0	2.52	I $\frac{7}{8}$
	$\frac{9}{16}$	＂	$7 \frac{1}{16}$	$9{ }^{5}$	15.4	51.3	2.57	2
	$\frac{5}{8}$	＂	$7 \frac{3}{16}$	$9 \frac{1}{1} \frac{1}{6}$	17.0	56.6	2.61	$2 \frac{1}{8}$

$\stackrel{\text { un }}{\stackrel{1}{x}}$	号总甸曽	DIAMETERS IN INS．			ONE COLUMN．			SIZE OF RIVETS．
		$\begin{gathered} d \\ \text { Inside. } \end{gathered}$	$\begin{aligned} & \text { D } \\ & \text { Out- } \\ & \text { side. } \end{aligned}$		Area of Cross Section． Sq．Inches．	Weight per Foot in Pounds．	Least Radius of Gyration． Inches．	
\mathbb{C}	$\frac{1}{4}$	$7 \frac{3}{16}$	$7 \frac{1}{1} \frac{1}{6}$	I $11 \frac{9}{16}$	10.0	$33 \cdot 3$	2.80	$\frac{5}{8} \times 1 \frac{7}{8}$
	$\frac{5}{16}$		$7 \frac{1}{1} \frac{3}{6}$	$11 \frac{5}{8}$	12.0	40.0	2.85	$1 \frac{7}{8}$
		66	$7 \frac{1}{1} \frac{5}{6}$	I I $\frac{1}{1} \frac{1}{6}$	14.0	46.6	2.90	2
	$\frac{7}{16}$	6	$8 \frac{1}{16}$	I I $\frac{3}{4}$	16.0	53.3	2.94	$2 \frac{1}{8}$
		66	$8 \frac{16}{3}$	I I $\frac{1}{1} \frac{3}{6}$	18.0	60.0	2.98	$\frac{1}{4}$
	16	66	$8 \frac{5}{16}$	I $1 \frac{7}{8}^{\frac{1}{6}}$	19.2	64.0	3.03	$2 \frac{3}{8}$
	15	66	$8 \frac{7}{16}$	12	21.2	70.6	3.08	$\frac{3}{4} \times 2 \frac{5}{8}$
	$\frac{1}{1} 6$	66	899	I $2 \frac{1}{1} \frac{1}{6}$	23.2	$77 \cdot 3$	3.12	$2 \frac{5}{8}$
	$\frac{3}{4}$	6	$8 \frac{11}{16}$	1 $2 \frac{3}{16}$	25.2	84.0	3.16	$2 \frac{3}{4}$
	$\frac{1}{1} \frac{3}{6}$	6	$8 \frac{1}{1} \frac{3}{6}$	I $2 \frac{5}{16}$	27.2	90.6	3.21	$2 \frac{7}{8}$
	$\frac{7}{8}$	66	$8 \frac{1}{1} \frac{5}{6}$	$12 \frac{7}{1}$	29.2	97.3	3.26	3
	I	66	$9 \frac{3}{16}$	I $2 \frac{9}{16}$	33.2	110.6	$3 \cdot 34$	$3 \frac{1}{8}$
	I $\frac{1}{8}$	${ }_{6} 6$	$9{ }^{1} \frac{1}{6}$	I $2 \frac{3}{4}$	37.2	124.0	3.43	$3 \frac{1}{4}$
	$1 \frac{1}{4}$	6	9 $11 \frac{1}{1}$	I $2 \frac{1}{1} \frac{5}{6}$	41.2	I 37.3	$3 \cdot 52$	
E	$\frac{1}{4}$	I I	I I $\frac{1}{2}$	I $5 \frac{7}{16}$	16.8	56.	4.18	$\frac{5}{8} \times 2$
	$\frac{5}{16}$	66	I $1 \frac{5}{8}$	15 ${ }^{\frac{9}{6}}$	19.2	64.	4.23	$2 \frac{1}{8}$
	1	66	II $\frac{3}{4}$	I $5 \frac{1}{1} \frac{1}{6}$	21.6	72.	4.28	$2 \frac{1}{8}$
	${ }^{7} 6$	66	$11 \frac{7}{8}$	I $5 \frac{1}{1} \frac{3}{6}$	24.0	80.	$4 \cdot 32$	$2 \frac{1}{4}$
		6 6	12	I $5 \frac{7}{8}^{6}$	26.4	88.	$4 \cdot 36$	$\frac{3}{8}$
	$\frac{9}{16}$	66	1 $2 \frac{1}{8}$	16	28.8	96.	4.40	$\frac{3}{8}$
	$\frac{5}{8}$	66	$12 \frac{1}{4}$	I $6 \frac{1}{16}$	31.8	Io6．	4.45	$2 \frac{1}{2}$
	1.1	66	$12 \frac{3}{8}$	I $6 \frac{3}{16}$	34.8	I 16.	4.50	$\frac{3}{4} \times 2 \frac{3}{4}$
	$\frac{3}{4}$	66	$12 \frac{1}{2}$	I $6 \frac{5}{16}$	37.8	126.	4.55	$2 \frac{3}{4}$
	$\frac{1}{1} \frac{3}{6}$	66	$12 \frac{5}{8}$	$16 \frac{7}{16}$	40.8	136.	4.60	$2 \frac{7}{8}$
	$\frac{7}{8}$	66	$12 \frac{3}{4}$	1 $6 \frac{5}{8}^{\frac{1}{6}}$	43.8	146.	4.64	3
	I	66	13	I $6 \frac{3}{4}$	49.8	I 66.	4.73	3
	I $\frac{1}{8}$	66	I $3 \frac{1}{1}$	17	55.8	I 86.	4.82	$3 \frac{1}{8}$
	I $\frac{1}{4}$	6	$13 \frac{1}{2}$	I $7 \frac{3}{16}$	61.8	206.	4.91	$3 \frac{1}{4}$
G	$\frac{5}{16}$	$14 \frac{3}{8}$	15	I9 ${ }^{\frac{1}{8}}$	24.	80.0	5.45	$\frac{5}{8} \times 2$
	$\frac{3}{8}$	66	I 5 1	I $9 \frac{1}{4}$	28.	93.3	$5 \cdot 50$	2
	$\frac{7}{16}$	66	I $5 \frac{1}{4}$	1938	32.	106.6	$5 \cdot 55$	$2 \frac{1}{8}$
	$\frac{1}{2}$	66	15 3	$19 \frac{7}{16}$	36.	120.0	5.59	$2 \frac{1}{4}$
	$\frac{9}{16}$	6	I 5 ${ }^{\frac{1}{2}}$	$19{ }^{\frac{1}{2}}$	40.	I 33.3	5.63	$2 \frac{3}{8}$
	1.6	6	15 5	$19 \frac{5}{8}$	44.	146.6	5.68	
	11	66	I5 ${ }^{\text {a }}$	193	48.	160.0		3×25
	${ }_{3}^{1}$		154	$19 \frac{3}{4}$	48.	160.0	5.72	$\frac{3}{4} \times 2 \frac{8}{8}$
	－	66	I $5 \frac{7}{8}$	I $9 \frac{7}{8}$	52.	173.3	$5 \cdot 77$	
	$\frac{1}{1} \frac{3}{6}$	66	16	20	56.	I 86.6	5.82	$2 \frac{3}{4}$
	$\frac{7}{8}$	6	$16 \frac{1}{8}$	20 $\frac{1}{8}$	60.	200.0	5.87	$2 \frac{7}{8}$
	1	66	$16 \frac{3}{8}$	20 $\frac{3}{8}$	68.	226.6	5.95	3
	$1 \frac{1}{8}$	66	$16 \frac{5}{8}$	20 $\frac{5}{8}$	76.	253.3	6.04	$3 \frac{1}{8}$
	$1 \frac{1}{4}$	6	$16 \frac{7}{8}$	$2 \mathrm{O}_{4}^{3}$	84.	280.0	6.14	$3 \frac{1}{4}$
	I $\frac{3}{8}$	66	I $7 \frac{1}{8}$	2 I	92.	306.6	6.23	$3 \frac{3}{8}$

THE PHCENIX IRON COMPANY,

R00FS.

Iron trusses for rafters have been rapidly growing into favor with architects of late, owing in large measure to the combined lightness, strength, durability, and consequent economy of such structures. Various forms have been proposed for the trusses, some of the best known of which are here shown.

Figs. II and 15 are familiar illustrations. Fig. 12 shows the modification of the ordinary King and Queen truss as adapted to wrought iron, and Figs. 13 and 14 give examples of arched trusses that have been employed to cover depots and market-houses when a pleasing shape has been sought for the general outline of the building. For simplicity and economic arrangement of material, the design exhibited in Figs. II and 15 offers advantages over either of the other forms, and is most generally adopted in practice.

For the principals, I or I beams make very good rafters, and in light trusses T bars, or two channel bars][either with or without a plate riveted to the upper flanges, answer every purpose. Struts may be made of light columns A or B , of T bars, or of angle iron 7 , any of these forms affording great facility for attachment to the rafters.

For arched roof trusses the details of construction are very similar to those described for peaked roofs; but as they are capable of great variety of treatment, the best illustrations that can be given of their forms will be by referring to Figs. 13 and 14-the highly ornamental and substantial roofs constructed by the Phœenix Iron Company for the market-house corner of Twelfth and Market Streets, Philadelphia, and for the station-shed at Altoona, on the Pennsylvania Railroad. These instances show the wide range of which the subject is susceptible.

410 WALNUT ST., PHILADELPHIA.

PHOENIX IRON WORKS. ROCK ISLAIVD ARSENAL.

MASONIC TEMPLE, Philadelphia.

MARKET HOUSE, 12th and Market Sis., Philada.

altoona station, Penna, r.r.

LEBANON FURNACE.

THE PHGENIX IRON COMPANY,

Ties may be of flat or round bars, attached by eyes and pins or screw ends. Care should be especially taken to properly proportion the dimensions of eyes and pins to the strains upon them. A very good and safe rule in practice is to make the diameter of the pin from $\frac{3}{4}$ to $\frac{4}{5}$ of the width of the bar in flats, and $1 \frac{1}{4}$ times the diameter of the bar in rounds, giving the eye a sectional area of 50 per cent. in excess of that of the bar. The thickness of flat bars should be at least one-fourth of the width, in order to secure good bearing surface on the pin, and the metal at the eyes should be as thick as the bars on which they are upset. Eyes are forged on the ends of flat or round bars by hydraulic pressure in suitably shaped dies, and, while the risk of a welded eye is thus avoided, a solid and well-formed eye is made from the iron of the bar itself. A similar process is adopted for enlarging the screw ends of long rods, so that when the screw is cut the diameter at the root of the thread is left a little larger than the body of the rod. Frequent trial with such rods has proven that they will pull apart in tension anywhere else but in the screw, the threads remaining perfect, and the nut turning freely after having been subjected to such a severe test. By this means the net section required in tension is made available with the least excess of material, and no more dead weight is put upon the structure than is actually required to carry the loads imposed.

The details of roof trusses vary to suit the character of the work and the sections of iron employed.

The heel of the rafter rests on the wall, either in a castiron skew-back fitted to the beam, and sloping to the angle required by the pitch of the roof, or between a couple of wrought angle-brackets riveted to the end of the rafter and resting on a wall-plate anchored to the wall. The struts are attached to the rafters by cast caps or by wrought strapplates, and the joint at their feet is easily made either for pin or screw connexions. The peak is joined by wrought plates and bolts, the beams having been cut to the required angle.

Main rafters may be spaced from four to twenty feet apart, the spacing being regulated by the size of the purlin,

410 WALNUT ST., PHILADELPHIA.

Fig. 17.
HEELS.

Fig. 19.
STRUT-FEET.

THE PHCENIX IRON COMPANY,

and this again by the material used for covering. For slate on iron purlins a convenient spacing is about eight feet between centres of rafters, the angle-iron purlins being put at seven to fourteen inches apart, according to the size of the slate used, and notched at the ends into the flanges of the rafters. They are held in place by tie-rods that reach from rafter to rafter the entire length of the building, three or four rows of these rods being placed between peak and heel, at from six to eight feet intervals. On the iron purlins the slate may be laid directly and held down by copper or lead nails, clinched around the angle-bar, as shown in Fig. 21 ; or a netting of wire may be fastened to the purlins, and a layer of mortar spread on this, in which the slates are bedded. When greater intervals are used in spacing rafters, the purlins may be light beams fastened on top or against the sides of the principals with brackets, allowance always being made for longitudinal expansion of the iron by changes of temperature. On these purlins are fastened wooden jack-rafters carrying the sheathing-boards or laths, on which the metallic or slate covering is laid in the usual manner, or sheets of corrugated iron may be fastened from purlin to purlin, and the whole roof be entirely composed of iron.

When the rafters are spaced at such intervals as to cause too much deflexion in the purlins, they may be supported by a light beam, placed midway between the rafters and trussed transversely with posts and rods. These rods pass through the rafters, and have bevelled washers, screws, and nuts at each end for adjustment. By alternating the trusses on either side of the rafter, and slightly increasing the length of the purlins above them, leaving all others with a little play in the notches, sufficient provision will be made for any alteration of length in the roof, due to changes of temperature.

When wooden purlins are employed they may be put between the rafters and held in place by tie rods, or on top and fastened to the rafters by brackets; or hook-head spikes may be driven up into the purlin, the head of the spike hooking under the flange of the beam, spacing pieces of

410 WALNUT ST., PHILADELPHIA.

Fig. 22.

WOODEN PURLING.
wood being laid on the top of the beam from purlin to pur. lin. The sheathing-boards and covering are then nailed down on top of all in the usual manner.

When desired, ventilators or lanterns are added along the ridge of the roof, as seen in Fig. 15, the attachments being securely made to the rafters by wrought brackets and bolts, and the bracing effected in a cheap and thorough manner by two tie-rods that run from the peak of the rafter to the angle between the post and rafter of the ventilator, the covering material being attached as described for the main rafters.

When it becomes desirable to suspend a ceiling from the rafter, the tie-rods are replaced by a beam, and the ceiling is attached to the lower flanges, curved T bars at the cornice serving to give any ornamental finish to the interior that may suit the design of the architect.

For Mansard-roofs short additional beams are allowed to project beyond the walls, and on these rest the feet of the T bar or [bar framing, well fastened by wrought brackets and bolts. On the framing are secured the $11 / 2 \times 3 / 8$ inch laths for attachment of the slate or metal covering, and with a cornice of galvanized sheèt iron perfect immunity from fire may be secured. This form of roof work in wrought iron admits also of great scope for ornamental design, but from the amount of work required it becomes rather more expensive than the less intricate combinations, and, as no two are alike in point of detail, it is difficult to estimate the cost of construction. Curving, shaping, and jointing the many pieces must be carefully done to secure the close fitting that is requisite, and practical experience in such work is of very great advantage to the builder. (The roof of the new post-office in New York is a very good illustration of the peculiarities of this class of work.)

In Fig. 24 the purlins of angle-iron carry wooden strips, to which are nailed the sheathing-boards and covering material. A netting of wire may be used to attach the plastering to the lower flanges of the tie-beams, or light

Fig. 23.
MANSARD.
OFFICE, STATEN ISLAND.
LIGHT-HOUSE DEP'T.

THE PHCENIX IRON COMPANY,

arches of tiles or hollow bricks may be turned on the lower flanges of smaller transverse beams as described for floors.

In roofs of wide span provision for expansion of the iron due to changes of temperature may be made by resting the skew-back of one end of the truss on a cast wall-plate, with rollers interposed to permit of the sliding of the heel without straining the wall, as in Fig. 25, but this precaution is not necessary in roofs of sixty feet span or less. Careful experiments have proved that an iron rod one hundred feet long will vary about $\frac{1}{10}$ of a foot for a change of temperature of 150 degrees Fahr., and as this is the greatest range to which iron beams and rods in a building would probably be subjected in this climate, compensation to that amount would be sufficient for all purposes. For sixty feet span the vibration of each wall would then be only ${ }_{1} \frac{15}{00} \sigma^{0}$ of a foot either way from the perpendicular, a variation so small and so gradually attained that there is no danger in imposing it upon the side walls by firmly fastening to them each heel of the rafter. Expansion is also provided against by fastening down one heel with wall-bolts and allowing the other to slide to and fro on the wall-plate without rollers, as shown in Fig. 17.

In estimating the strains on roofs the weight of the structure itself as well as the loads to be supported must be taken into account. Tredgold's assumption of the total maximum vertical load at forty pounds per square foot of horizontal surface is usually considered sufficiently high; but if a floor or ceiling is suspended to the tie-beam, or should the under side of the rafters be boarded and plastered, it is evident that these additional weights require more strength in the roof for their support.

For ordinary roofs of short span thirty pounds per square foot is quite enough, however, and for long spans, over sixty feet, thirty-five pounds will be sufficient to provide for, with the factors of safety in the material that are usually adopted. The stresses upon each member of the truss having been determined by any of the methods of calculation preferred, the sectional areas may be found by taking the safe tensile strength of good wrought iron at 10,000 pounds per square

410 WALNUT ST., PHILADELPHIA.

FRAMING and BRACING OF ROOF, Fig, 26.

THE PHCENIX IRON COMPANY,

inch, and the compressive resistance of beam or shape iron at from 6000 to 8000 pounds for the same unit of section.

It should be noted that the smaller or counterbrace rods ought to be made strong enough to resist strains induced by wind pressure on one side of the roof only,-the other half being unloaded.

Lateral braces, as in Fig. 26, should be provided in each end panel of straight roofs, as well to secure the roof during erection as to provide an abutment that will uphold the whole in case of fire or accident. From the panels so braced tie-rods run to each of the other rafters, and, with the purlins, unite the roof into a firm and compact whole. The gable walls are sometimes used to anchor the end rods into, but the method shown in the figure is that which is generally preferred.

A very economical combination of iron rafters with wrought-iron posts is shown in Fig. 27, this arrangement being well adapted for machine-shops, foundries, or other buildings in which it is desirable to cover a large area, and also to have an ample supply of light on the floor.

The posts on each side are placed from sixteen to twenty feet apart, and the heel of the intermediate rafter is supported by a trussed beam attached to the heads of the posts, the sheds on either side being covered by beams, trussed or untrussed, as the length of span may require. The skewback of the rafter and the cap of the post are cast in one piece, and all of the details of attachment between the parts are made in an equally simple and substantial manner. As a round-house for locomotives, or for many other purposes connected with railroad management, shops arranged on this plan commend themselves to the attention of engineers and master-mechanics, and for private establishments they have been found to answer their purpose admirably well, giving the maximum of surface covered at the minimum of first cost.

THE PHCENIX IRON COMPANY,

RECORD OF TESTS OF BEAMS.

TRANSVERSE STRENGTH.

As trustworthy data on which to base calculations for the efficiency of beams under transverse strain the tables given below are now published, having been the result of carefully conducted experiments on the part of the Phœenix Iron Company.

From these tables have been ascertamed the coefficients for the safe load of each beam, so that it will be seen that dependence has not been placed merely on theoretical formulæ in assigning these values, but the truth of these formulæ has been demonstrated by the test of actual experiment.

7-inch Beam. 60 Lbs. per Yard. Area, 6 Sq. Inches. Clear Span, 21 Feet.				9-inch Beam. 87 Lbs. per Yard. Area, 8.7 Sq. Inches. Clear Span, 21 Feet.			
Centre Load, in Lbs.	Deflexion, Inches.	$\begin{gathered} \text { In- } \\ \text { crease, } \\ \text { Inches. } \end{gathered}$	Remarks.	Centre Load, in Lbs.	$\begin{aligned} & \text { Deflex- } \\ & \text { ion, } \\ & \text { Inches. } \end{aligned}$	$\begin{aligned} & \text { In- } \\ & \text { crease, } \\ & \text { Inches. } \end{aligned}$	Remarks.
2,000	. 468			2,000	. 228		
3,000	. 743	. 275		4,000	. 474	. 246	
4,000	1.020	. 277		6,000	. 720	. 246	
5,000	1.298	. 278		8,000	. 962	. 242	
6,000	.029 1.578	Perm. set. . 280	Wt. rem'd.	10,000	$\begin{aligned} & 1.201 \\ & .048 \end{aligned}$.239 Perm. set.	$\begin{aligned} & \mathrm{Wt} \text { rem'd. } \end{aligned}$
	$.030\{$	Perm. set.	Wt. rem'd.	12,000	1.432	$\xrightarrow{.231}$ Perm.	
7,000	1.887	$\dot{\text { Perm }}$			${ }_{1.580}^{.050}$ \{	set. set . 48	rem'd
8,000	${ }^{.060} 2.300$	set. .413	rem'd.	13,000	. 11.17 \{	Perm. set.	Vt. rem'd.
	$.183\{$	Perm. set.	$\begin{aligned} & \text { Wt. } \\ & \text { rem'd. } \end{aligned}$	14,000	${ }^{1.863}$	$\stackrel{.283}{\text { Perm. }}$	
$\begin{aligned} & 9,000 \\ & 9,500 \end{aligned}$. 269		rem'd.
	5.298	1.758		16,000	3.256	1. 393	
10,000			Beam sunk slowly, top flange	17,000	5.233	1.977 \{	$\begin{aligned} & \text { Side } \\ & \text { deflexion } \\ & \text { begins. } \end{aligned}$
				17,500	5.6c2	.369	

410 WALNUT ST., PHILADELPHIA.

9-inch Beam.
150 Lbs. per Yard. Area, 15 Sq. Inches.
Clear Span, 14 Feet.

$\begin{gathered} \text { Centre } \\ \text { Load, } \\ \text { in Lbs. } \end{gathered}$	$\begin{aligned} & \text { Deflex- } \\ & \text { ion, } \\ & \text { Inches. } \end{aligned}$	Increase, Inches.	Remarks.
5,608	. 102		
6,720	. 126	. 024	
7840	. 148	. 022	
8,960	. 170	. 022	
10,080	. 192	. 022	
11,200	. 214	. 022	
12,320	. 239	. 025	
13,440	.261	. 022	
14,560	. 287	. 026	
15,680	- 310	. 023	
16,800	. 336	. 026	
${ }^{17,920}$. 359	. 023	
19,040	. 382	. 023	
20,160	. 409	. 027	
21,280	. 435	. 026	
22,400	. 458	. 023	
23,520	. 487	. 029	
24,640	. 516	. 029	
25,760	. 543	. 027	
26,880	.572 .600	. 029	
28,000	. 600	. 038	
29,120 29,120	. 633	. 033	stand
29,120	. 682	. 049	$3 / 4$

15-inch Beam.
200 Lbs. per Yard. Area, 20 Sq. Inches.
Clear Span, 14 Feet.

Weight removed. Permanent set, .o16. After lapse of one hour the lnad of 15 tons was replaced, and caused a total deflexion of .222 inches as before.

12-inch Beam.
125 Lbs. per Yard. Area, 121/2 Sq. Inches. Clear Span, 27 Feet.

Centre Load, in Lbs.	Deflexion, Inches.	Increase, Inches.
	6,720	.691
7,840	.821	.130
8,960	.948	.127
10,080	1.061	.113
11,200	1.186	.125
12,320	1.328	.142
13,340	1.466	.138
14,560	1630	.164
15,680	1.800	.170
16,800	1.976	.176
17,920	2.228	.252
19,040	2.455	.227
20,160	2.742	.287
20,720	2.900	.158
20,720	2.965	.065

Last load left on 15 minutes.
Deflexion increasing to 2.965 .

15-inch Beam.

155 Lbs. per Yard. Area, 15½ Sq. Inches. Clear Span, 27 Feet.

Centre Load, in Lbs.	Deflexion, Inches.	Increase, Inches.
	6,720	.342
7,840	.402	.060
8,960	.462	.060
10,080	.523	.061
11,200	.580	.057
12,320	.639	.059
13,440	.707	.068
14,560	.778	.071
15,680	.845	.067
16,800	.913	.068
17,920	.992	.079
19,040	1.063	.071
20,160	1.149	.086
22,400	1.309	.160
24,640	1.505	.196
25,760	1.603	.098

Load removed. Deflexion decreased to .26I permanent set after lapse of $1 / 2$ hour.

RECORD OF TESTS OF PHENIX COLUMNS

Made with Hydraulic Press, 260 口 ${ }^{\prime \prime}$ Piston Area.

The breaking-load of a bar of wrought iron one inch square $12^{\prime \prime} \mathrm{c}$. to c . of points of support is just 2240 pounds.

```
410 WALNUT ST., PHILADELPHIA.
```


NOTES

CONCERNING SPECIFICATIONS OF QUALITY FOR IRON.

The tensile strength of iron is properly determined by ascertaining the load under which permanent set takes place, and the amount of stretch under the proof load, rather than from the ultimate load that causes the fracture of the bar. In other words, the elastic limit rather than the breaking strain should be regarded as the measure of quality in a bar, and working loads should be proportioned with reference to the elastic limit instead of to the so-called ultimate strensth.

Tough, sinewy iron is what is required in a tension bar, and although a hard, unyielding iron may show greater ultimate strength under a gradually applied strain, yet it is not suitable for use under tension for the reason that a sudden shock may cause it to snap under a weight that it ought to carry with entire safety.

Good bar iron should be of uniform character and possess a limit of elasticity of not less than 25,000 pounds per square inch. The ultimate resistance of prepared testbars having a sectional area of about one square inch for a length of 10 inches should be not less than 50,000 pounds per square inch when the test-bars have been prepared from full-sized bars having not more than 4 square inches of sectional area. For each additional square inch of fullsized bar area above 4 square inches a reduction of 500 pounds per square inch may be allowed down to a minimum ultimate resistance of 46,000 pounds. The amount of stretch under the breaking load should be not less than 15 per cent. in 10 inches of the test-bar.

THE PHGENIX IRON COMPANY,

Bars that are to be used in tension should stand, without cracking, a cold bending test to 90 degrees to a curvature the radius of which is about the thickness of the bar under test, and at least one third of the lot should stand bending to 180 degrees under the same conditions.

A round bar, one inch in diameter, should bend double, cold, without signs of fracture. A square bar of the same quality may show cracks on the edges under such a test.

Under a breaking pull the reduction of area should be not less than 25 per cent. of the original section.

The shape of a bar has much influence in determining the breaking-strain. The ultimate strength of round bars is, for this reason, considerably greater than that of flat bars, but in either case the elastic limit will be found to occur at about the same point for equally good qualities of iron.

Within the elastic limit the extension of iron may, for all practical purposes, be stated as follows:

Wrought iron, $1 \frac{1}{0} \sigma \sigma$ of its length per ton per square inch.

Cast iron, $\frac{1}{5000}$ of its length per ton per square inch.
The compression of wrought iron within the limits of elasticity follows the same law, and the amount of shortening under pressure will be in direct proportion to the weight applied. But with cast iron the amount of compression does not follow a constant ratio, the compression per ton becoming greater with the increase of the weight. Thus, a cast iron bar, one square inch in section was compressed $\frac{1}{5900}$ of its length by a load of one ton; but under a load of 17 tons, instead of being compressed $\frac{17}{5} \frac{7}{90}$, it was compressed ${ }_{5} \frac{20}{90 \sigma}$.

The Modulus of Elasticity is a term used to designate such a weight as would extend a bar through a space equal to its original length, supposing the elasticity of the bar to be perfect. Or, the modulus of elasticity of any given material in feet is the height in feet of a column of this material, the weight of which would extend a bar of any determinate length through a space equal to this length. Thus, if one ton extends an inch bar of wrought iron one ten-thousandth of its length, it is evident that, upon the
supposition that the bar is perfectly elastic, 10,000 tons would extend it to twice its original length. Hence, on this assumption, 10,000 tons, or $22,400,000$ pounds, will be the modubus of elasticity of the wrought iron stated in weight. But an inch bar of wrought iron to weigh $22,400,000$ pounds, at $31 / 3$ pounds per foot, would be $6,720,000$ feet long, and this would express the modulus of elasticity in feet.

The modulus of elasticity will, of course, vary according to the character of the material tested, being much higher in the better than it is in the lower grades of iron, but it forms a very useful and convenient standard of comparison in determining quality.

KIRKALDY'S CONCLUSIONS.

Mr. Kirkaldy sums up the results of his experimental inquiry in the following concluding observations, which the student should study carefully :
I. The breaking-strain does not indicate the quality, as hitherto assumed.
2. A high breaking-strain may be due to the iron being of superior quality, dense, fine, and moderately soft, or simply to its being very hard and unyielding.
3. A low breaking-strain may be due to looseness and coarseness in the texture, or to extreme softness, although very close and fine in quality.
4. The contraction of area at fracture, previously overlooked, forms an essential element in estimating the quality of specimens.
5. The respective merits of various specimens can be correctly ascertained by comparing the breaking-strain jointly with the contraction of area.
6. Inferior qualities show a much greater variation in the breaking-strain than superior.
7. Greater differences exist between small and large bars in coarse than in fine varieties.

THE PHEENIX IRON COMPANY,

8. The prevailing opinion of a rough bar being stronger than a turned one is erroneous.
9. Rolled bars are slightly hardened by being forged down.
10. The breaking-strain and contraction of area of iron plates are greater in the direction in which they are rolled than in a transverse direction.
11. Iron is less liable to snap the more it is worked and rolled.
12. The ratio of ultimate elongation may be greater in short than in long bars in some descriptions of iron, whilst in others the ratio is not affected by difference in the length.
13. Iron, like steel, is softened, and the breaking-strain reduced, by being heated and allowed to cool slowly.
14. A great variation exists in the strength of iron bars which have been cut and welded; whilst some bear almost as much as the uncut bar, the strength of others is reduced fully a third.
15. The welding of steel bars, owing to their being so easily burned by slightly overheating, is a difficult and uncertain operation.
16. Iron is injured by being brought to a white or welding heat, if not at the same time hammered or rolled.
17. The breaking-strain is considerably less when the strain is applied suddenly instead of gradually, though some have imagined that the reverse is the case.
18. The specific gravity is found generally to indicate pretty correctly the quality of specimens.
19. The density of iron is decreased by the process of wire-drawing, and by the similar process of cold rolling,* instead of increased, as previously imagined.
20. The density of iron is decreased by being drawn out under a tensile strain, instead of increased, as believed by some.
[^1]
410 WALNUT ST., PHILADELPHIA.

200. It must be abundantly evident from the facts which have been produced that the breaking-strain when taken alone gives a false impression of, instead of indicating, the real quality of the iron, as the experiments which have been instituted reveal the somewhat startling fact that frequently the inferior kinds of iron actually yield a higher result than the superior. The reason of this difference was shown to be due to the fact, that whilst the one quality retained its original area only very slightly decreased by the strain, the other was reduced to less than one-half. Now surely this variation, hitherto unaccountably completely overlooked, is of importance as indicating the relative hardness or softness of the material, and thus, it is submitted, forms an essential element in considering the safe load that can be practically applied in various structures. It must be borne in mind that although the softness of the material has the effect of lessening the amount of the breaking-strain, it has the very opposite effect as regards the zoorking-strain. This holds good for two reasons: first, the softer the iron the less liable it is to snap; and second, fine or soft iron, being more uniform in quality, can be more depended upon in practice. Hence the load which this description of iron can suspend with safety may approach much more nearly the limit of its break-ing-strain than can be attempted with the harder or coarser sorts, where a greater margin must necessarily be left.
201. As a necessary corollary to what we have just endeavored to establish, the writer now submits, in addition, that the working-strain should be in proportion to the break-ing-strain per square inch of fractured area, and not to the breaking-strain per square inch of original area as heretofore. Some kinds of iron experimented on by the writer will sustain with safety more than double the load that others can suspend, especially in circumstances where the load is unsteady, and the structure exposed to concussions, as in a ship or railway bridge.
KIRKALDY'S RULE FOR COMPARING THE QUALITIES OF IRON:
The breaking-weight per square inch of the fractured area, instead of the breaking-weight or strain per square inch of the original area.

THE PHGENIX IRON COMPANY,

DIMINUTION OF TENACITY OF WROUGHT IRON

At High Temperatures.

EXPERIMENTS FRANKLIN INSTITUTE, 1839.
WALTER JOHNSON AND BENJAMIN REEVES, COM.

C.	Fahr.	Diminution per cent. of Max. Tenacity.	C.	Fahr.	$\begin{aligned} & \text { Diminution } \\ & \text { per cent. of Max. } \\ & \text { Tenacity. } \end{aligned}$
271°	$5^{20}{ }^{\circ}$	0.0738	500°	932°	0.3324
299		0.0869	508		0.3593
313		0.0899	554		0.4478
316		0.0964	599		0.5514
332	630	0. 1047	624	II 54	0.6000
350		O. 1155	626		0.6011
378		0.1436	642		0.6352
389	732	0.1491	669		0.6622
390		-. 1535	674	1245	0.6715
408		-. 1589	708	1306	0.7001
410		0.1627			
440		0.2010			

The contraction of a wrought-iron rod in cooling is about equivalent to $\frac{1}{100000}$ of its length from a decrease of 15° Fahr., and the strain thus induced is about one ton for every square inch of sectional area in the bar.

For a rod of the lengths given below the contraction will be as follows:

Contraction and expansion being equal, the pressure per square inch induced by heating or cooling is as follows:

For temperatures varying by 15° Fahr. :

$$
\begin{array}{lccccccccl}
\text { Variation, } & 15 & 30 & 45 & 60 & 75 & 105 & 120 & 150 & \text { degrees. } \\
\text { Pressure, } & 1 & 2 & \frac{7}{3} & 4 & 5 & \frac{7}{7} & \frac{8}{8} & \frac{10}{10} & \text { tons. }
\end{array}
$$

Stoney gives $8^{\circ} \mathrm{C}$. $=14.4$ Fahr. as equivalent to a pressure of one ton per square inch for wrought iron, and 15° C. $=27$ Fahr. for cast iron.

LINEAR EXPANSION OF METALS.

Between 0° and $100^{\circ} \mathrm{C}$. For $\mathrm{I}^{\circ} \mathrm{C}$. For I° Fahs.

For a change of 100° Fahr., a har of iron 1475^{\prime} long will extend I foot. Similarly, a bar 100 feet long will extend .0678 foot, or .8136 inch.

According to the experiments of Du Long and Petit, we have the mean expansion of iron, copper, and platinum, between 0° and $100^{\circ} \mathrm{C}$., and 0° and $300^{\circ} \mathrm{C}$., as below :

$$
\text { From } 0^{\circ} \text { to } \mathbf{~} 00^{\circ} \mathrm{C} . \quad \circ^{\circ} \text { to } 300^{\circ} \mathrm{C} \text {. }
$$

The law for the expansion of iron, steel, and cast iron at very high temperatures, according to Rinman, is as follows :

	From 25° to $525^{\circ} \mathrm{C}$. Ked Heat $=500^{\circ} \mathrm{C}$.	For $1^{\circ} \mathrm{C}$.	$\mathrm{r}^{\circ} \mathrm{Fahr}$.
Iron	. 00714	.000143 $=$.0000080
Steel	. 01071	$.0000214=$.0000119
Cast Iron	. 01250	. $0000250=$.000013

Nascent White $=1275^{\circ} \mathrm{C}$.

Iron01250	$.00000981=.00000545$		
Steel 21787	$.00001400=.00000777$		
Cast Iron	.	.02144	$.00001680=.00000933$

From 500° to 1500°. Dull Red to White Heat $=1000^{\circ} \mathrm{C}$. Difference.

Iron		
Steel . .	.00535	$.00000535=.0000030$
Cast Iron	.	.00714
$.00000714=.0000040$		
.00893	$.00000893=$.0000050

Ratio of Expansion in Hundred Parts, assuming Forge Iron to Expand between 0° and $100^{\circ} \mathrm{C} .=.00122$.

$$
\text { From } 0^{\circ} \text { to } 100^{\circ} . \quad 25^{\circ} \text { to } 525^{\circ} . \quad 25^{\circ} \text { to } 1300^{\circ} . \quad 500^{\circ} \text { to } 1500^{\circ} .
$$

Iron. . Ioo per ct. 117 per ct. So per ct. 44 per ct.
Steel . 93 " 175 " 114 " 58 "
Cast Iron 91 " 205 " 137 " 73 "

DIFFERENT COLORS OF IRON CAUSED BY HEAT. pouillet.

c.	Fahr.	Color.
210°	410°	Pale Yellow.
221	430	Dull Yellow.
256	493	Crimson.
261	$502\}$	Violet, Purple, and Dull Blue ; b
370	680	tween $261^{\circ} \mathrm{C}$. to $370^{\circ} \mathrm{C}$. it passes to Bright Blue, to Sea Green, and then disappears.
500	932	Commences to be covered with a light coating of oxide; loses a good deal of its hardness, becomes much more impressible to the hammer, and can be twisted with ease.

| 525 | . | . | 977 |
| ---: | :--- | :--- | :--- | . . . Becomes Nascent Red.

700 . . 1292 . . . Sombre Red.

MELTING POINT OF METALS.

Name. Fahr. Fahr. Authority.
Platina 4593°
Antimony . . . 955 . . . 842 . . . J. Lowthian Bell.
Bismuth 487 . . 507 . . . "

Tin (average) . . 475
Lead " .. 622 . . . 620 . . . "
Zinc 772 . . . 782 . . . "

Cast Iron 2010 $\left\{\begin{array}{l}1922 . .2012 \text {. . White. } \\ 2012 . .2192 \text {. . Gray. }\end{array}\right\}$ Pouillet.
Wrought Iron . . 2910 . . 2733 . . . Welding Heat. "6
Steel 2370 . . 2550
Copper (average). 2174

NOTES ON THE

WEIGHT AND COMPOSITION OF AIR.

1 cubic foot of air at 32° Fahr., under a pressure of 14.7 lbs. per square inch, weighs .080728 lb .

Therefore, 1000 cubic feet $=80.728 \mathrm{lbs}$.
\mathbf{I} cubic foot $=\mathbf{I} .292 \mathrm{oz} . . \quad \cdot \cdot\left\{\begin{array}{l}23 \text { per cent. Oxygen. } \\ 77 \text { per cent. Nitrogen. }\end{array}\right.$
I cubic foot of air contains . . . $\left\{\begin{array}{l}.29716 \mathrm{oz} . \text { Oxygen. } \\ \frac{.99484 \mathrm{oz} . \text { Nitrogen. }}{\text { I. } 29200 \text { total weight. }}\end{array}\right.$
I cubic foot of air contains . . . $\left\{\begin{array}{l}.0185725 \mathrm{lb} . \text { Oxygen. } \\ \frac{.0621555 \mathrm{lb} . \text { Nitrogen. }}{.080728 \mathrm{lb}} .\end{array}\right.$
53.85 cubic feet of air contain.$\left\{\begin{array}{l}\text { 1.000 lbs. Oxygen. } \\ \frac{3.347 \mathrm{lbs} . \text { Nitrogen. }}{4.347 \mathrm{lbs} .}\end{array}\right.$

Carbonic acid $=\mathrm{C} \mathrm{O}_{2}=22$.

$$
\mathrm{C}=6 . \quad \mathrm{O}=8 . \quad \mathrm{O}_{2}=16 . \quad 6+\mathrm{r} 6=22
$$

For combustion to carbonic acid I lb. of coal requires $2 \frac{2}{3}$ lbs. of oxygen, or 143.6 cubic feet of air, supposing all of the oxygen to combine with the coal. 280 to 300 cubic feet of air per pound of coal is the usual allowance for imperfect combustion.
II. 59 lbs . of air for perfect combustion. 24 lbs. of air for imperfect combustion.

THE above cut illustrates a girder composed of two beams supporting a wall. During the construction a temporary prop should be placed beneath the girder after several courses of brick have been laid, and the prop should not be removed until the masonry is dry. This will prevent undue deflexion of the girder.

The girder should be of sufficient strength to sustain the entire weight of the wall between perpendicular lines above the span to a height corresponding to the apex of the dotted lines.

Assuming the weight of a cubic foot of brick wall to be II 2 pounds, a superficial square foot of 9 inch wall will weigh 84 pounds, of 13 inch wall 121 pounds, and of 18 inch wall 168 pounds, and the following table specifies suitable beams for use as girders over the several spans named.

PROPER SIZES OF BEAMS TO USE AS GIRDERS FOR SUPPORTING WALLS.

SPAN.	$13^{\prime \prime}$ Wall.	SPAN.	$13^{\prime \prime}$ Wall.
Feet.		Feet.	
8 to 10	$2-6^{\prime \prime} 40 \mathrm{lbs}$.	18 to 20	2- $\mathrm{IO}_{2}^{1 / \prime} 90 \mathrm{lbs}$.
10 to 12	$2-7^{\prime \prime} 55$ lbs.	20 to 22	2-I2'1 96 lbs .
12 to 14	2 - $8^{\prime \prime} 65$ lbs.	22 to 24	$2-12^{\prime \prime} 125 \mathrm{lbs}$.
14 to 16	$2-9^{\prime \prime} 70 \mathrm{lbs}$.	24 to 26	$2-155^{\prime \prime}$ I 50 lbs .
16 to 18	$2-9^{\prime \prime} 84 \mathrm{lbs}$.	26 to 28	$2-15{ }^{\prime \prime} 200 \mathrm{lbs}$.

T A B L E S

TiU

THE PHCENIX IRON COMPANY,

WEIGHT OF FLAT BAR IRON.

PER FOOT.

WEIGHT OF FLAT BAR IRON.

	THICKNESS, IN INCHES.											
g	16	8	$\begin{gathered} 3 \\ 16 \end{gathered}$	4	$\begin{gathered} 5 \\ 16 \end{gathered}$	3 8	$\frac{7}{16}$	2	8	3	7 8	
53/4	lbs. 1.21	$l b s$ 2.42	$l b s$ 3.63	lbs 4.84	lbs. 6.05	lbs. 7.26	$\begin{aligned} & l b s . \\ & 8.47 \end{aligned}$	$\begin{aligned} & \text { lbs. } \\ & 9.68 \end{aligned}$	$l b s$. 12.10	lbs. 14.53	lbs. 16.95	19.37
6	1.26	2.53	3.79	5.05	6.32	$7 \cdot 5^{8}$	8.84	10.10	12.63	15.16	17.68	I
61/4	1.3I	2.63	3.95	5.27	6.58	7.90	9.21	10.53	13.16	15.79	18.42	22.05
$61 / 2$	1.36	2.73	4.10	5.47	6.84	8.21	9.58	10.94	13.68	16.42	19.16	21.88
63/4	1.42	2.84	4.26	5.69	7.10	3.53	9.95	11. 36	14.21	17.05	19.90	22.73
7	1.47	2.94	4.42	5.90	$7 \cdot 36$	8.84	10.32	II 79	14.74	17.68	20.64	8
71/4	1.53	3.05	4.58	6.11	7.63	9.16	10.68	12.21	15.26	18.32	21.37	4^{2}
$71 / 2$	1.58	3.16	$4 \cdot 74$	6.32	7.90	9.48	c6	12.64	15.78	18.94	22. 11	. 28
$73 / 4$	1.63	3.26	4.90	6.53	8.16	$9 \cdot 79$	II. 42	13.06	16.31	19.57	22.84	26.12
8	1.68	3.36	5.05	6.74	8.42	10.10	11.78	13.48	16.84	20.20	23.58	26.94
81/4	1.74	3.47	5.21	6.95	8.68	10.42	12.16	13.89	17.37	20.84	$24 \cdot 32$	27.79
$31 / 2$	1.79	358	$5 \cdot 36$	7.16	8.94	10. 74	12.52	14.32	17.90	21.48	25.06	63
83/4	1.84	3.68	$5 \cdot 53$	$7 \cdot 37$	9.21	11.05	12.89	14.74	18.42	22.10	25.79	29.47
9	1.90	$3 \cdot 79$	5.68	$7 \cdot 5^{8}$	9.48	11. 36	13.26	15.16	18.95	2275	52	3032
91/4	1.95	3.90	5.84	$7 \cdot 79$	9.74	11.68	13.63	15.58	1947	23.38	27.26	31.16
91/2	2.00	4.00	6.00	8.00	10.00	1200	14.00	16.00	20.00	24.00	28.00	32.00
93/4	2.05	4.11	6.16	8.21	10.26	12.32	14.37	16.42	20.53	24.63	28.74	32.84
10	2.10	4.21	6.32	8.42	10.52	12.64	14.74	16.84	21.05	2526	29.48	33.68
101/4	2.16	$4 \cdot 32$	6.	8.63	10.79	12.95	15.11	17.26	21.58	25.89	30.21	34.52
101/2	2.21	4.41	6.64	8.84	11.05	13.26	15.48	17.68	22.10	26.52	30.95	$35 \cdot 36$
103/4	2.26	4.53	6.79	9.05	11.32	13.58	15.84	18	63	27.16	31.68	36.21
II	2.32	4.64	6.95	9.26	11	13.90	16.21	1		27.78	32.42	37.04
$111 / 4$	2.37	4.74	7.11	47	11.85	14.21	16.58	18	23.68	28.42	33.15	37.89
$111 / 2$	2.42	4.84	7.26	9.68	12.10	,	16.94	19.36	24.20	29.06	33.90	38.74
113/4	2.47	4.94	7.42	9.89	12	14.84	17.31	19.7	24.73	29.69	34.63	$39 \cdot 56$
12	2.52	5.05	7.58	10.10	12.64	15.16	17.68	20.20	25.26	30.32	$35 \cdot 36$	40.40

THE PHCENIX IRON COMPANY,
WEIGHT OF WROUGHT IRON.

Thickness or Inches.	Diam. in Dec'ls, of a Foot.	Wt. of a Sq. Foot, Lbs.	Wt. per Foot Sq. Bar, Lbs.	Wt. per Joot Round Bar, Lbs.
$\frac{1}{32}$. 0026	1.263	. 0033	. 0026
$\frac{1}{16}$. 0052	2.526	. 0132	. 0104
$\frac{3}{32}$. 0078	3789	. 0296	. 0233
	. 0104	5.052	. 0526	.0414
32	. 0130	6315	. 0823	. 0646
$\frac{3}{16}$.OI 56	7.578	. 1184	. 0930
$\frac{7}{32}$. 1182	8.84 I	.1612	. 1266
	. 0208	IO. 10	. 2105	. 1653
$\frac{9}{32}$. 0234	11.37	. 2665	. 2093
$\frac{5}{16}$. 0260	12.63	. 3290	. 2583
$\frac{1}{3} 1$. 0287	13.89	. 3980	. 3126
$\frac{3}{8}$. 0313	1516	. 4736	. 3720
$\frac{1}{3} \frac{3}{2}$. 0339	16.42	. 5558	. 4365
$\frac{7}{16}$. 0365	17.68	.6446	. 5063
$\frac{1}{3} 5$.0391	18.95	.7400	.5813
$\frac{1}{2}$. 0417	20.21	. 8420	.66I3
$\frac{9}{1.6}$. 0469	22.73	1.066	. 8370
8	. 0521	25.26	1.316	1.033
$\frac{11}{1} \frac{1}{6}$. 0573	27.79	I. 592	I. 250
$\frac{3}{4}$. 0625	3031	1.895	1.488
$\frac{1}{1} \frac{3}{6}$. 0677	32.84	2.223	1.746
$\frac{7}{8}$. 0729	35.37	2.579	2.025
$\frac{15}{15}$. 0781	3789	2.960	2.325
${ }^{1}$. 0833	40.42	3.368	2.645
$\frac{1}{1 / 6}$. 0885	42.94	- 3.803	2.986
${ }^{1} 8$. 0938	4547	4.263	3.348
$\frac{3}{16}$. 0990	48.00	4.750	3.730
$\frac{1}{4}$. 1042	50.52	5.263	4.133
- 1.6	. 1094	53.05	5.802	4.557
$\frac{3}{8}$. 1146	5557	6.368	5.001
$\frac{7}{16}$. 1198	58.10	6.960	$5 \cdot 466$
$\frac{1}{2}$. 1250	60.63	7.578	5.952
$\frac{5}{8}$. 1354	65.68	8.893	6.985
$\frac{3}{4}$. 1458	70.73	10.31	8.101
$\frac{7}{8}$.1563	75.78	I I 1.84	9.300
2	. 1667	80.83	13.47	10.58
$\frac{1}{8}$. 1771	85.89	15.21	II 95
$\frac{1}{4}$.1875	9094	17.05	13.39
$\frac{3}{8}$. 1979	95.99	19.00	14.92
क	. 2083	IOI.O	21.05	16.53
$\frac{8}{8}$. 2188	106. I	23.21	18.23
$\frac{3}{4}$. 2292	111.2	25.47	20.01
$\frac{7}{8}$.2396	I 16.2	27.84	21.87
3	. 2500	121.3	30.31	23.81

410 WALNUT ST., PHILADELPHIA.

WEIGHT OF WROUGHT IRON.

Thickness or Inches.	Diam. in Dec'ls, of a Foot.	Wt. of a Sq. Foot, Lbs.	Wt. per Foot Sq. Bar, Lbs.	Wt. per Foot Round Bar, Lbs.
$3 \frac{1}{8}$. 2604	126.3	32.89	25.83
$\frac{1}{4}$. 2708	131.4	35.57	27.94
$\frac{3}{8}$. 2813	136.4	38.37	30.13
$\frac{1}{2}$.2917	141.5	41.26	32.41
$\frac{5}{8}$. 3021	146.5	44.26	34.76
$\frac{3}{4}$. 3125	151.6	$47 \cdot 37$	37.20
$\frac{7}{8}$. 3229	I 56.6	50.57	39.72
4	. 3333	161.7	53.89	42.33
$\frac{1}{8}$. 3438	166.7	57.31	45.01
$\frac{1}{4}$. 3542	171.8	60.84	47.78
$\frac{3}{8}$. 3646	176.8	64.47	50.63
$\frac{1}{2}$. 3750	181.9	68.20	53.57
$\frac{5}{8}$. 3854	I 86.9	72.05	56.59
$\frac{3}{4}$. 3958	192.0	75.99	59.69
$\frac{7}{8}$. 4063	197.0	80.05	62.87
5	.4167	202.1	84.20	66.13
$\frac{1}{8}$. 427 I	207.1	88.47	69.48
$\frac{1}{4}$. 4375	212.2	92.83	72.91
$\frac{3}{8}$. 4479	217.2	97.31	76.43
$\frac{1}{2}$. 4583	222.3	Ior. 9	80.02
$\frac{5}{8}$. 4688	227.3	106.6	83.70
$\frac{3}{4}$. 4792	232.4	I I I 1.4	87.46
$\frac{7}{8}$.4896	237.5	116.3	91.31
6	. 5000	242.5	121.3	95.23
$\frac{1}{4}$. 5208	252.6	131.6	103.3
$\frac{1}{2}$. 5417	262.7	142.3	III 1.8
$\frac{3}{4}$. 5625	272.8	I 53.5	120.5
7	. 5833	282.9	165.0	129.6
$\frac{1}{4}$. 6042	293.0	177.0	139.0
$\frac{1}{2}$. 6250	303. I	189.5	148.8
$8^{\frac{3}{4}}$. 6458	313.2	202.3	I 58.9
8	. 6667	323.3	215.6	169.3
$\frac{1}{4}$. 6875	$333 \cdot 4$	229.3	I 80.1
$\frac{1}{2}$. 7083	343.5	243.4	191.I
$\frac{3}{4}$. 7292	353.6	247.9	202.5
9	. 7500	363.8	272.8	214.3
$\frac{1}{4}$. 7708	373.9	288.2	226.3
$\frac{1}{2}$.7917	384.0	304.0	238.7
$\frac{3}{4}$.8125	394.I	320.2	251.5
10	. 8333	404.2	336.8	264.5
$\frac{1}{2}$. 8750	424.4	37 I. 3	291.6
11	. 9167	444.8	407.5	320.1
$\frac{1}{2}$.9583	464.6	445.4	349.8
12	1 Foot.	485.	485.	380.9

GENERAL RULES

FOR DETERMINING

THE WEIGHT OF ANY PIECE OF WROUGHT IRON.

One cubic foot of wrought iron $=480 \mathrm{lbs}$.
One square foot, one inch thick . . $=\frac{480}{12}=40 \mathrm{lbs}$.
One square inch, one foot long . . . $=\frac{40}{12}=3 \frac{1}{3} \mathrm{lbs}$.
One square inch, one yard long . . $=3 \frac{1}{3} \times 3=10 \mathrm{lbs}$.

Hence it appears that the weight of any piece of wrought iron in pounds per yard is equal to 10 times its area in square inches.

Example.-The area of a bar $3^{\prime \prime} \times \mathbf{1}^{\prime \prime}=3$ square inches, and its weight is 30 lbs . per yard.

For round iron the weight per foot may be found by taking the diameter in quarter inches, squaring it, and dividing by 6 .

Example.-What is the weight of $2^{\prime \prime}$ round iron? $2^{\prime \prime}=8$ quarter inches. $\delta^{2}=64$. $\frac{64}{6}=10 \frac{2}{3} \mathrm{lbs}$. per foot of $2^{\prime \prime}$ round.

Example.-What is the weight of $\frac{3}{4} / \prime$ round iron?
${ }^{\frac{3}{4} / \prime}=3$ quarter inches. $\quad 3^{2}=9$. $\frac{9}{6}=\mathrm{I} \frac{1}{2} \mathrm{lbs}$. per foot of $\frac{3}{4} /$ round.

The above rules are highly convenient, and enable mental calculations of weight to be quickly obtained with accuracy.

```
410 WALNUT ST., PHILADELPHIA.
```


CAST-IRON PIPE.

weight of a lineal foot.

	THICKNESS OF METAL, IN INCHES.								
	$\frac{1}{4}$	$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	3 4	$\frac{7}{8}$		$1 \begin{aligned} & 1 \\ & 8\end{aligned}$	$1 \frac{1}{4}$
	lbs.	lbs.	$l b s$.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
2	5.5	8.7	12.3	16.1	20.3	24.7	29.5	34.5	39.9
$21 / 2$	6.8	10.6	14.7	19.2	24.0	29.0	$34 \cdot 4$	40.0	46.0
3	7.9	12,4	17.2	22.2	27.6	32.3	$39 \cdot 3$	45.6	52.2
$31 / 2$	9.2	14.3	19.6	$25 \cdot 3$	31.3	37.6	44.2	51.0	58.3
4	10.4	16.1	22.1	28.4	35.0	41.9	49.I	56.6	64.4
$4^{1 / 2}$	11.7	18.0	24.5	31.5	$3^{8.7}$	46.2	54.0	62.1	70.6
5	12.9	19.8	27.0	34.5	$4^{2} \cdot 3$	50.5	59.9	67.7	76.7
$5^{1 / 2}$	14.1	21.6	29.5	37.6	46.0	54.8	63.8	73.2	82.9
6	15.3	23.5	31.9	40.7	497	59.1	68.7	78.7	89.0
7	17.8	27.2	36.9	46.8	57.1	67.7	78.5	89.8	10x.
8	20.3	30.8	41.7	52.9	644	76.2	88.4	101.	114.
9	22.7	34.5	46.6	59.1	71.8	84.8	98.2	112.	126.
10	25.2	38.2	51.5	65.2	792	93.4	108.	123.	138.
11	27.6	41.9	56.5	71.3	86.5	102.	1 I 8.	134.	150.
12	30.1	45.6	61.4	77.5	93.9	111.	128.	145.	16_{3}
13	32.5	49.2	66.3	83.6	IOI.	119.	138.	156.	175.
14	35.0	52.9	71.2	89.7	109.	128.	147.	167.	187.
15	37.4	56.6	76.1	95.9	116.	136.	157.	178.	199.
16	39.1	60.3	81.0	102.	123.	145.	167.	189.	212.
18	44.8	67.7	90.9	114.	138.	162.	187.	211.	236.
20	49.7	75.2	101.	127.	153.	179.	206.	233.	261.
22	54.6	82.6	III.	139.	168.	197.	226.	255.	285.
24	59.6	89.9	120.	151.	182.	214.	245.	278.	310.
26	64.5	$97 \cdot 3$	131.	164.	198.	231.	266.	300.	335.
28	69.4	105.	140.	176.	212.	249.	286.	323.	360.
30	74.2	112.	150.	188.	227.	266.	305.	345.	384.

Note.-For each joint, add a foot to length of pipe.

THE PHCENIX IRON COMPANY,

GALVANIZED AND BLACK IRON.

Weight in Pounds per Square Foot of Galvanized Sheet Iron, both Flat and Corrugated.

The numbers and thicknesses are those of the iron before it is galvanized. When a flat sheet (the ordinary size of which is from 2 to $2 \frac{1}{2}$ feet in width, by 6 to 8 feet in length) is converted into a corrugated one, with corrugations 5 inches wide from centre to centre, and about an inch deep (the common sizes), its width is thereby reduced about $\frac{1}{10}$ th part, or from 30 to 27 inches; and consequently the weight per square foot of area covered is increased about $\frac{1}{9}$ th part. When the corrugated sheets are laid upon a roof, the overlapping of about $2 \frac{1}{2}$ inches along their sides and of 4 inches along their ends diminishes the covered area about $\frac{1}{7}$ th part more; making their weight per square foot of roof about $\frac{1}{6}$ th part greater than before. Or the weight of corrugated iron per square foot in place on a roof is about $\frac{1}{3}$ greater than that of the flat sheets of above sizes of which it is made.

	BLACK.				GALVANIZED.			
	Flat.		Corrugated.		Flat.		Corrugated.	
	Lbs.	$\begin{gathered} \text { On } \\ \text { Roof. } \end{gathered}$	Lbs.	$\begin{gathered} \text { On } \\ \text { Roof. } \end{gathered}$	Lbs.	$\begin{gathered} O n \\ \text { Roof. } \end{gathered}$	Lbs.	$\begin{gathered} \text { On } \\ \text { Roof. } \end{gathered}$
30	. 48	56	. 53	. 62	. 71	. 83	. 79	91
29	52	. 61	. 58	. 68	. 75	. 87	. 83	. 97
28	. 56	. 67	. 62	. 73	8 r	. 94	. 90	1.05
27	. 64	. 75	. 71	. 83	. 87	1.01	97	1.13
26	. 72	. 84	. 80	. 93	. 94	1.09	1.04	1.21
25	80	. 93	. 89	1.04	1.00	r. 17	I.11	1.29
24	. 88	1.03	98	1.14	1.06	1.24	1.18	1.37
23	1.00	1.17	1.11	1.29	1.19	1. 39	1.32	1.54
22	1.12	1.31	1.24	1.45	1.31	1. 53	1.47	1.71
21	1.28	1. 49	1.43	1.67	1.50	1.75	1.67	1.95
20	1. 40	т. 63	1.56	1.82	1. 75	2.03	1.94	2.26
19	1. 69	1.97	1.87	2.18	1. 94	2.26	2.15	2.51
18	т. 96	229	2.18	2.54	2.37	2.76	2.63	3.07
17	2.33	272	2.59	3.02	2.69	313	299	3.49
16	2.60	3.03	2.89	3.37	3.00	3.50	3.33	3.88
15	289	337	3.21	3.74	3.30	3.85	3.67	4.28
14	3.33	3.88	3.70	431	3.75	$4 \cdot 37$	4.17	486
13	3.81	444	4.23	4.93	4.23	493	4.70	$5 \cdot 48$

Note. - The galvanizing of sheet iron adds about one-third of a pound to its weight per square foot.

AMERICAN AND BIRMINGHAM WIRE GAUGES.

			$\begin{aligned} & \dot{0} 0 \\ & \text { I. } \\ & \text { ㄷ. } \\ & \dot{\circ} \end{aligned}$					
0000	$\begin{aligned} & \text { Inch. } \\ & 16 \end{aligned}$		1 I		$\begin{aligned} & \text { Inch. } \\ & .12 \end{aligned}$	25		Inch. . 02
000	. 409	5	12	. 0808	. 109	26	. O 6	. O 8
00	. 3648	.38	13	.0719	. 095	27	. 0142	. 016
O	. 3248	. 34	14	.064I	. 083	28	. 0126	. 014
1	. 2893	. 30	15	. 057	. 072	29	. O 12	.OI3
2	. 2576	. 284	16	. 0508	.065	30	. 1.1	. 12
3	. 2294	. 259	17	. 0452	. 058	3 I	.0089	. OI
4	. 2043	. 238	18	. 0403	. 049	32	. 0079	. 009
5	.1819	. 22	19	. 0359	. 042	33	. 007	. 008
6	. 1620	. 203	20	.0319	. 035	34	. 0063	. 007
7	. 1443	. 18	21	. 0284	. 332	35	. 0056	. 005
8	. 1285	. 165	22	. 0253	. 028	36	. 005	. 004
9	. 1144	. 148	23	. 0225	. 025			
10	. 1019	. 34	24	. O 2 OI	. 022			

RAILROAD SPIKES.

Length and Thickness in a Keg of 150 Pounds.

Length.	Thickness.	Number.	Length.	Thickness.	Number.
$4 \frac{1}{2}$	$\frac{7}{16}$	527	$5 \frac{1}{2}$	$\frac{1}{2}$	356
$4 \frac{1}{2}$		400	$5 \frac{1}{2}$	1.6	290
5	$\frac{3}{8}$	710	$5^{\frac{1}{2}}$		219
5	$\frac{7}{16}$	489	6	$\frac{1}{2}$	311
5		390	6	$\frac{9}{16}$	263
5	$\frac{9}{16}$	296	6	$\frac{5}{8}$	197
5	${ }^{5}$	258			

SPLICES AND BOLTS FOR ONE MILE OF TRACK.

Rails 30 feet long take 704 splices, 1408 bolts.

"	28	"	"	754	"	1508	$"$
"	27	"	"	782	$"$	1564	"
"	25	"	"	844	$"$	1688	$"$
		"	880	$"$	1760	$"$	

RAILROAD IRON.

To find the number of tons of rails for one mile of single track, divide the weight per yard by 7 and multiply by ir. Thus: for 56 lb . rail, $56 \div 7=8$, and $8 \times 1 \mathrm{I}=88$ tons per mile.

THE PHCENIX IRON COMPANY,

Thickness
or Diameter,
in Inches.

410 WALNUT ST., PHILADELPHIA.

WIRE.

IRON, STEEL, COPPER, BRASS.
Weight of 100 Feet in Pounds. Birmingham Wire Gauge.

No. of Gauge.	PER LINEAL FOOT.			
	Iron.	Steel.	Copper.	Brass.
0000	54.62	55.13	62.39	58.93
000	47.86	48.32	54.67	51.64
00	38.27	38.63	43.71	41.28
o	30.63	30.92	34.99	33.05
I	23.85	24.07	27.24	25.73
2	21.37	21.57	24.41	23.06
3	17.78	17.94	20.3	19.18
4	I 5.01	I 5.15	17.15	16.19
5	12.82	12.95	14.65	13.84
6	10.92	11.02	12.47	II. 78
7	8.586	8.667	9.807	9.263
8	7.214	7.283	8.241	7.783
9	5.805	5.859	6.63	6.262
10	4.758	4.803	$5 \cdot 435$	5.133
I I	3.816	3.852	4.359	4.117
12	3.148	3.178	$3 \cdot 596$	$3 \cdot 397$
13	2.392	2.414	2.732	2.58
14	I. 826	1.843	2.085	1.969
15	1. 374	1.387	1. 569	I. 482
16	I.119	I. 13	1.279	1.208
17	. 8915	. 9	1.018	.9618
18	. 6363	.6423	. 7268	. 6864
19	. 4675	. 472	. 534	. 5043
20	. 3246	. 3277	. 3709	. 3502
21	. 2714	. 274	. 31	. 2929
22	. 2079	. 2098	. 2373	. 2241
23	. 1656	. 1672	. 1892	.1788
24	. 1283	. 1295	. 1465	. 1384
25	.106	. 107	. 12 I I	. 1144
26	. 0859	. 0867	.0981	. 0926
27	. 0678	. 0685	. 0775	. 0732
28	.0519	. 0524	. 0593	. 056
29	. 0448	. 0452	. 0511	. 0483
30	.0382	. 0385	. 0436	. 0412
31	.0265	. 0267	. 0303	. 0286
32	. 0215	. 0217	. 0245	.023I
33	. 017	. 0171	. 0194	.or83
34	. 013	. 0131	. 0148	. 014
35	. 0066	. 0067	. 0076	. 0071
36	. 0042	. 0043	. 0048	.0046

THE PHEENIX IRON COMPANY,

IRON RIVETS.

WEIGHT IN POUNDS PER 100.

Length Under Head, Inches.	DIAMETERS, INCHES.						
	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	I
I d $\frac{1}{8}$ $\frac{1}{4}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{2}$ $\frac{5}{8}$ $\frac{3}{4}$ 7 8	Lbs.	Lbs.	L.bs.	Lbs.	Lbs.	Lbs.	Lbs.
	1.895	4.848	. 966	16.79	26.49	39.3	55.2
	2.067	5.235	10.34	17.86	27.99	41.4	57.9
	2.238	5.616	II. 04	18.96	29.6I	43.5	60.7
	2.410	6.003	I 1.73	20.03	31.13	45.6	63.4
	2.582	6.402	12.43	21.04	32.74	47.8	66.2
	2.754	6.789	13.12	22.11	34.25	49.9	68.9
	2.926	7.179	13.81	23.21	35.86	52.0	71.7
	3.098	7.566	14.50	24.28	37.37	54.I	74.4
2	3.269	7.956	15.19	25.48	38.99	56.3	77.2
$\frac{1}{8}$$\frac{1}{4}$$\frac{1}{8}$$\frac{3}{8}$$\frac{1}{2}$$\frac{5}{8}$$\frac{3}{4}$$\frac{7}{8}$$\frac{7}{8}$	3.441	8.343	I 5.88	26.56	40.40	58.4	79.9
	3.613	8.733	16.57	27.65	42.11	60.5	82.7
	3.785	9.120	17.26	28.73	43.67	62.6	85.4
	3.957	9.511	17.95	29.82	45.24	64.8	88.2
	4.129	9.898	18.64	30.90	46.80	66.9	90.9
	4.301	10.29	19.33	31.99	48.36	69.0	93.7
	4.473	10.67	20.02	33.08	49.92	7 I .1	96.4
3	4.644	I 1.06	20.71	34.18	51.49	73.3	99.2
$\frac{1}{8}$	4.816	I I . 44	21.40	35.27	53.05	75.4	IOI. 9
$\frac{1}{4}$	4.988	II 1.84	22.09	36.35	54.61	77.5	104.7
$\frac{3}{8}$	5.160	12.23	22.78	37.44	56.17	79.6	107.4
$\frac{1}{2}$	$5 \cdot 332$	12.62	23.48	38.52	57.74	8 I .8	I 10.2
$\frac{5}{8}$	$5 \cdot 504$	13.01	24.17	39.60	59.30	83.9	I 12.9
$\frac{3}{4}$	5.676	I 3.39	24.86	40.69	60.86	86.0	I 16.7
8	5.848	I 3.78	25.55	41.78	62.42	88.1	I 19.4
4	6.019	14.17	26.24	42.87	63.99	90.3	121.2
${ }^{\top} \frac{1}{8}$	6.191	14.56	26.93	43.94	65.55	92.4	123.9
4	6.363	I 4.95	27.62	45.01	67.11	94.5	I26.6
$\begin{gathered} 100 \\ \text { Heads. } \end{gathered}$. 519	1.74	4.14	8.10	13.99	22.27	33.15

Length of rivet required to make one head $=1 \frac{1}{2}$ diameters of round bar.

410 WALNUT ST., PHILADELPHIA.

NAILS AND SPIKES.

Size, Length, and Number to the Pound. CUMBERLAND NAIL AND IRON CO.

ORDINARY.			CLINCH.		FINISHING.		
Size.	Longth.	No. to Lb.	Langth.	No. to Lb.	Size.	Length.	No. tn Lb.
$2^{\text {d }}$	$\frac{7}{8}$	716	2	152	$4^{\text {d }}$	I_{4}^{3}	384
3 fine	$1 \frac{1}{16}$	588	$2 \frac{1}{4}$	I 33	5	I $\frac{18}{8}$	256
3	$1 \frac{1}{16}$	448	$2 \frac{1}{2}$	92	6	2	204
4	$1 \frac{3}{8}$	3.36	$2 \frac{3}{4}$	72	8	$2 \frac{1}{2}$	102
5	$1{ }^{3}$	216	3	60	10	3	80
6	2	166	$3{ }^{1}$	43	12	$3 \frac{5}{8}$	65
7	2.	118	FENCE.		20	$3 \frac{7}{8}$	46
8	$2 \frac{1}{2}$	94			CORE.		
10	$2 \frac{3}{4}$	72	2	96			
12	$3{ }^{\frac{1}{8}}$	50	2			${ }^{\prime \prime}$	143
20	$3{ }^{3}$	32	$2 \frac{1}{4}$	56		2	
30	$4{ }_{4}^{1}$	20	$2 \frac{1}{2}$		8	$2 \frac{1}{2}$	68
40	$4{ }^{\frac{3}{4}}$	17	$2 \frac{3}{4}$	50	10	$2 \frac{1}{3}$	60
$\begin{aligned} & 50 \\ & 60 \end{aligned}$	5	14	3	40	12	$3 \frac{1}{8}$	42
	$5 \frac{1}{2}$	10	SPIKES.		20	$3{ }^{\frac{3}{4}}$	25
Light.			1	19	40	$4 \frac{3}{4}$	14
$4^{\text {d }}$56	"		$3 \frac{1}{2}$				$\begin{aligned} & 69 \\ & 72 \end{aligned}$
	$1 \frac{3}{8}$	373	4	15	W HWHL	$\begin{aligned} & 2 \frac{1}{2} \\ & 2 \frac{1}{4} \end{aligned}$	
	$\mathrm{I}^{3} 4$	272	$\begin{aligned} & 4^{\frac{1}{2}} \\ & 5 \\ & 5^{\frac{1}{2}} \end{aligned}$	13			
	2	196			Slate.		
BRADS.				7	$3^{\text {d }}$	$\begin{aligned} & \quad \prime \prime \\ & I_{1} \frac{5}{16} \\ & I_{1}^{7} 6 \\ & I^{\frac{3}{4}} \\ & 2 \end{aligned}$	288
	"		B0AT.				
$6^{\text {d }}$	2	162			244		
8	$2 \frac{1}{2}$	96	"				187
10	$2 \frac{3}{4}$	74	I $\frac{1}{2}$	206			140
12	$3 \frac{1}{8}$	50					

TACKS.

Size.	官	Number to Pound.	Size.	$\begin{aligned} & \stackrel{1}{5}{ }_{0}^{0} \\ & \stackrel{y}{\leftrightarrows} \end{aligned}$	Number to Pound.	Size.	咢	Number to Pound.
I oz.	$\frac{1}{8}$	16000	4 oz .	$\frac{7}{16}$	4000	14 oz .	16	1143
$1 \frac{1}{2}$	$\frac{3}{16}$	10066	6	$\frac{9}{15}$	2666	16	$\frac{7}{8}$	1000
2	$\frac{1}{4}$	8000	8	$\frac{5}{8}$	2000	18	$\frac{1}{1} \frac{5}{6}$	888
$2 \frac{1}{2}$	$\begin{array}{r}5 \\ 19 \\ \hline\end{array}$	6400	10	$\frac{11}{1} 6$	1600	20		800
3	$\frac{3}{8}$	5333	12	$\frac{3}{4}$	1333	22	I $\frac{1}{16}$	727

THE PHCENIX IRON COMPANY,

UNITED STATES STANDARD SIZES SQUARE AND HEXAGON NUTS.

Number of each size in 100 Lbs.
BLANK NUTS-NOT TAPPED.

$\begin{gathered} \text { Size } \\ \text { of } \\ \text { Bolt. } \end{gathered}$	SIZE OF NUT.		SQUARE.		HEXAGON.	
	Width.	Thickness.	No. in 100 Lbs .	Weight each in Lbs.	No. in 100 Lbs .	Weight each in Lbs.
$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	7400	. 013	8880	. OI 1
$\frac{5}{16}$	$\frac{1}{3} \frac{9}{2}$	$\frac{5}{16}$	4000	. 025	4800	. 020
$\frac{3}{8}$	$\frac{11}{16}$	$\frac{3}{8}$	2730	. 036	3276	. 030
$\frac{7}{16}$	$\frac{25}{3}$	$\frac{7}{16}$	1700	. 058	2040	. 050
$\frac{1}{2}$	$\frac{7}{8}$	$\frac{1}{2}$	1160	. 086	1392	. 071
$\frac{9}{16}$	$\frac{3}{3} \frac{1}{2}$	$\frac{9}{16}$	900	. 1 I I	1080	. 092
$\frac{5}{8}$	$\mathrm{I}_{1} \frac{1}{16}$	$\frac{5}{8}$	653	. 153	784	. 127
$\frac{3}{4}$	$1 \frac{1}{4}$	$\frac{3}{4}$	386	. 259	463	. 215
$\frac{7}{8}$	${ }^{1} \frac{7}{16}$	$\frac{7}{8}$	260	.384	312	.320
1	$1 \frac{5}{8}$	1	170	. 588	204	. 490
$1 \frac{1}{8}$	I $1 \frac{3}{1} \frac{3}{6}$	I $\frac{1}{8}$	122	. 819	146	. 684
I_{4}^{1}	2	$1 \frac{1}{4}$	90	I. I I I	108	. 925
I $\frac{3}{8}$	$2 \frac{3}{16}$	I $\frac{3}{8}$	69	I. 44	83	I. 20
$1 \frac{1}{2}$	$2 \frac{3}{8}$	$1 \frac{1}{2}$	54	1.85	65	I. 53
$1 \frac{5}{8}$	$2 \frac{9}{16}$	$1 \frac{5}{8}$	43	2.32	52	1.92
$1 \frac{3}{4}$	$2 \frac{3}{4}$	I $\frac{3}{4}$	35	2.85	42	2.38
$1 \frac{7}{8}$	$2 \frac{1}{1} \frac{5}{6}$	$1 \frac{7}{8}$	29	344	35	2.85
2	$3 \frac{1}{8}$	2	24	4.16	30	3.33
$2 \frac{1}{8}$	$3 \frac{5}{16}$	$2 \frac{1}{8}$	20	5.00	26	3.84
$2 \frac{1}{4}$	$3 \frac{1}{2}$	$2 \frac{1}{4}$	17	5.88	22	4.54
$2 \frac{3}{8}$	$3 \frac{1}{1} \frac{1}{6}$	$2 \frac{3}{8}$	14	7.14	19	5.26
$2 \frac{1}{2}$	$3 \frac{7}{8}$	$2 \frac{1}{2}$	12	8.33	16	6.25
$2 \frac{3}{4}$	$4 \frac{1}{4}$	$2 \frac{3}{4}$	10	10.00	13	7.69
3	$4 \frac{5}{8}$	3	8	12.50	10	10.00

410 WALNUT ST., PHILADELPHIA.

B0LTS.

WITH SQUARE HEADS AND NUTS. Weight of 100 of the Enumerated Sizes.

Lengths.	$1 / 4 \mathrm{in}$	$3 / 8 \mathrm{in}$.	1/2 in.	5/8in.	$3 / 4 \mathrm{in}$.	7/8 in.	1 in .	1/8in.
Inch.								
$11 / 2$	4.16	10.62	23.87	$39 \cdot 31$				
$13 / 4$	4.22	11.72	25.06	41.38				
	4.75	12.38	26.44	45.69	73.62			
$21 / 4$	$5 \cdot 34$	1290	2862	49.50	76.			
$21 / 2$	5.97 6.50	14.69	29.50	5 I .25	79.75			
23/4	6.50	16.47	31.16		83			
	17.87	32.44	$56 .$	$85 \cdot 3^{8}$	127.25		
$31 / 2$	18.94	39.75	6312	93.44	140.56		
	2059	42.50	74.87	108.12	148.37		
41/2		21.69	44.87	79.62	$1{ }^{1} 312$	158.76		$310 .$
	23.62	48.81	83.88	122.	167.25	$250 .$	$324 .$
$51 / 2$		2581	$5 \mathrm{I} \cdot 38$	87.88	128.62	174.88		338
6	2687	53.31	92.38	131.75		$272 .$	$352 .$
61/2			56.87	96.88	139.56	214.69	$283 .$	$366 .$
		99^{87}		228.44	294.	
$7_{6}^{1 / 2}$			61.87	105.75	150.88	23531	305.	$3^{8} 4$
8		6444	1cg. 50	157.12	239.88	316.	398.
9			70.50	118.12	169.62	258.12	338.	426.
10		77. 82.88	12813 136.19	184.	276.18	360. 382.	454
11		82.88 86.37	136.19 144.87	195.13 209.75	295.69 311.94	382. 404	482
12			86.37 92.	144.87 155.50	209.75 219.37	311.94 33581	404 426.	$\begin{aligned} & 510 . \\ & 538 . \end{aligned}$
14			97.75	16358	237.50	351.88	448.	566.
15			103.25	170.75	249.06	391.75	470.	594.

STANDARD SIZES OF WASHERS.

Number in 100 Pounds.

Diamater.	Size of Hole.	Thickness Wire Gauge.	Size of Bolt.	Number in 100 Lbs.
Inch.	Inch.	No.	Inch.	
$\frac{5}{8}$	$\frac{5}{16}$	16	$\frac{1}{4}$	29300
$\frac{3}{4}$	$\frac{1}{3}$	16	$\frac{5}{16}$	18000
I	${ }^{7} 6$	14	$\frac{3}{8}$	7600
$\mathrm{I} \frac{1}{2}$	$\frac{9}{16}$	II	$\frac{1}{2}$	3300
$1 \frac{1}{2}$	$\frac{5}{8}$	II	$\frac{9}{16}$	2180
$1 \frac{1}{2}$	$\frac{11}{16}$	II	$\frac{5}{8}$	2350
I $\frac{3}{4}$	$1 \frac{1}{1} 6$	II	$\frac{3}{4}$	1680
2	$\frac{31}{3}$	10	$\frac{7}{8}$	1140
$2 \frac{1}{2}$	$1 \frac{1}{8}$	8	1	580
$2 \frac{3}{4}$	$1{ }_{4}^{1}$	8	I $\frac{1}{8}$	470
3	I $\frac{3}{8}$	7	$1 \frac{1}{4}$	360
3	I $\frac{1}{2}$	6	1 $\frac{3}{8}$	360

THE PHCENIX IRON COMPANY,

OR WATER.

- әunssəxd อ!̣!nвирКH
Hydraulic Pressure.
MORRIS, TASKER \& CO.
TABLE OF STANDARD SIZES.

Inside Diameter.	Actual Inside Diameter.	Actual Outside Diameter.	Thickness.	Internal Circum- ference.	External Circum- ference.	Length of Pipe per \square Foot, Inside Surface	Length of Pipe per \square Foot, Outside Surface	Internal Area.	External Area.	Length of Pipe containing 1 Cubic Foot.	Weight per Foot of Length.	No.ofThreads per Inch of Screw.
hes.	Inches.	Inches.	Inches	Inches.	Inches.	Feet.	Feet.	Inches.	Inches.	Feet.	Lbs.	
1/8	. 270	. 405	. 068	. 848	1.272	14.15	9.44	. 0572	129	2500	243	27
$1 / 4$. 364	. 54	. 088	1.144	1. 696	10. 50	7.075	. 1041	. 229	1385.	422	
$3 / 8$. 494	. 675	. 091	1.552	2.121	7.67	5.657	. 1916	. 358	751.5	. 561	18
1	. 623	. 84	. 109	1.957	2.652	6.13	4.502	. 3048	. 554	472.4	. 845	14
3/4	824	. 05	.113	2.589	3.299	4.635	3.637	. .8333	.866 $\mathbf{r} .357$	${ }_{1}^{270 .}$	1.126 1.670	${ }_{14}^{14}$
	1.048	1.315	. 134	3.292	4.134	3679 2.768	2.903 2.301	.8627 \times \times	1.357 3.164	1669 96.25	1.670 2.258	${ }_{111} 1 / 2$
$11 / 4$	1.380	1.66	.140 .145 .154	4.335 5.061	5.215 5.960	2.768 2.371	2.301 2.01	1.496 2.038	3.164 2.835	96.25 70.65	2.258 2.694	$1111 / 2$
$\mathrm{I}_{2}^{1 / 2}$	1.611 2.067		.145 .154	5.061 6.494	5.969 7.46 I	2.371 1.848	2.01 1.611	2.038 3.355	2.835 4.430	70.65 42.36	2.694 3.667	$111 / 2$
$21 / 2$	2.067 2.468	2.375 2875 2.5	.154 .204	6.494 7.754	7.461 9.032	$\begin{array}{r}1.848 \\ 1547 \\ \hline\end{array}$	1.611 1.328	3.385 4.783	4.491	30.11	5.773	8
	3.067	3.5	. 217	9.636	11996	1.245	1.091	7.388	9.621	19.49	7.547	
31/2	3.548		. 226	11.146	12.566	1.077	. 955	9.887	12.566	14.56	9.055	
	4.026	45	. 237	12.648	14.137	. 949	. 849	12.730	15.904	11.31	10.728	8
$41 / 2$	4.508	5.	. 247	14.153	15.708	. 848	. 765	15.939	19.635	9.03	12.492	8
	5.045	5.563	. 259	15.849	17.475	. 757	. 629	19.99° 28.889	${ }^{2} 4.299$	7.20 4.98	14.564 18.767	8
6	$6 . c 65$	6.625	. 280	19.054	20.813	. 63	. 577	28.889	34471	4.98	18.767	8
7	7.023 7982	7.625 8.625	.301 .322	$\begin{aligned} & 22.063 \\ & 25.076 \end{aligned}$	23.954 27.096	. 5444	$\begin{array}{r} .505 \\ .444 \end{array}$	38.737 50.039	45.663 58.426	3.72 2.88	23.410 28.348	8
9	9.001	9.688	. 344	28.277	30.433	. 425	- 394	63.633	73.715	2.26	34.077	8
10	10.019	10.75	. 366	31.475	33.77^{2}	.38x	. 355	78.838	90.762	1.80	40.641	

LAP WELDED

american charcoal IRON BOILER TUBES.

Tables of Standard Sizes.

		霉							
In.	In.				Ft.				
	0.856			2.689	4.460	3.819		0.785	
	. 106	0.072	3.	3.474	3.455	3.056	0.960	1.227	. 9
	I. 334	0.083	4.712	4.191	2.863	2.547	1. 396	1. 767	. 2
	1.560	0.095	5.498	4.901	2.44	2.183	1.911	2.405	т.665
	t. 804	0.098	6.283	5.667	2.118	1.909	2.556	3.142	1981
	2.054	-098	7.069	6.484	1.850	1.6	3.314	3.976	
	2.283	0. 109	7.854	7.172	1. 673	I. 528	4.094	4.909	2.755
$23 / 4$	2.533	-. 109	8.639	7.957	I. 508	I. 390	5.039	5.940	3.045
	2.783	-.109	9.425	8.743	1. 373	1.273	6.083	7.069	3. 3.33
	3.012	0.119	10.210	9.462	1.268	I. 175	7.125	8.296	3.958
	3.262	0.119	10.98	10.248	1.171	I. 095	8.357	9.621	4.272
33/4	35	-.119	11.781	11.033	1.0	1.018	9.687	11.045	4
	3.745	0.130	12.566	11.753	1.023	0.955	10.992	12.566	5.320
	4.241	0.130	14.137	13.323	0.901	0.849	14.126	15.904	6.010
5	4.7	0. 14	15.708	14.818	0.809	0.76	17.497	19.635	7.22
6	5.69	-. 151	18.849	17.904	- 670	0.637	5.	28.274	9.340
	6.6	0.172	21.991	20.914	0.574	0. 545	34.805	38.484	12435
8	7	0.182	25.132	23.989	0. 500	0.478	45.795	50.265	15.109
9	8.615	o. 193	28.274	27.055	0.444	0.424	58.291	63.617	18.002
	9.573	0.214		30.074	0.3	0.38	71.9	78.540	2219

WROUGHT-IRON WELDED TUBES.
Extra Strong.

Nominal Diameter.	Actual Outside Diameter.	Thickness, Extra Strong	Thickness, Double Extra Strong.	Actual Inside Diameter, Extra Strong.	Actual Inside Diameter, Double Extra Strong.
1/8	. 405	. 100 205	
$1 / 4$. 54	. 123 294	
3/8	. 675	. 127		. 421	
$1 / 2$. 84	. 149	. 298	. 542	. 244
$3 / 4$	1.05	. 157	. 314	. 736	. 422
1	1.315	. 882	. 364	. 951	. 587
	1. 66	. 194	. 388	1. 272	. 884
I $1 / 2$	1.9	. 203	. 406	1. 494	1.088
	2.375 2.875	.221 .280 .304		1. 933	1.491
$21 / 2$	2.875	.280 .304	.560 .608	2.315 2.892	1.755
3 $31 / 2$	3.5 4.	.304 .321 .311	. 608	2.892 3.358	2.284 2.716
$3^{31 / 2}$	4.5	. 321	. 642	3.358 3.818	2.716 3.13

THE PHCENIX IRON COMPANY,

WINDOW GLASS.

Number of Lights per Box of 50 Feet.

Inches.	No.	Inches.	No.	Inches.	No.	Inches.	No.
6×8	150	12×18	33	16×44	10	26×32	9
7×9	115	20	30	18×20	20	+ 34	8
8×10	90	22	27	22	18	36	8
	82	24	25	24	17	40	7
12	75	26	23	26	15	42	7
13	70	28	21	28	14	44	6
14	64	30	20	30	13	48	6
15	60	32	18	32	13	50	0
16	55	34	${ }^{1} 7$	34	12	54	5
$9 X 11$	72	13×14	40	36	II	- 5^{8}	5
12	67	16	35	38	II	28×30	9
13	62	18	31	40	10	32	8
14	57	20	28	44	9	34	8
15	53	22	25	20×22	16	36	7
16	50	24	23	24	15	38	7
17	47	26	21	26	14	40	6
18	44	28	19	28	13	44	6
χ^{20}	40	$\times 30$	18	30	12	46	6
10×12	60	14×16	32	32	II	50	5
13	55	18	29	34	II	52	5
14	52	20	26	36	10	-56	4
15	48	22	23	38	9	30×36	7
16	45	24	22	40	9	40	6
17	42	26	20	44	8	42	6
18	40	28	18	46	8	44	5
20	36	30	17	48	8	46	5
22	33	32	16	50	7	48	5
24	30	34	15	60	6	50	5
26	28	36	14	22×24	14	54	4
28	26	40	13	26	13	56	4
30	24	-44	II	28	12	-60	4
32	22	15×18	27	30	11	32×42	5
	21	20	24	32	10	44	5
11×13	50	22	22	34	10	46	5
14	47	24	20	36	9	48	5
15	44	26	18	38	9	50	4
16	41	28	17	40	8	54	4
${ }^{1} 7$	39	30	16	44	8	56	4
18	36	32	15	46	7	60	4
20	33	16×18	25	50	7	34×40	5
22	30	${ }_{20}$	23	24×28	II	44	5
24	27	22	20	30	10	46	5
26	25	24	19	32	9	50	4
28	23	26	17	36	8	52	4
30	21	28	16	40	8	56	4
32	20	30	15	44	7	36×44	5
	19	32	14	46	7	50	4
12×14	43	34	13	48	6	56	4
	40	36	12	50	6	60	3
16	38	38	12	54	5	64 $\times 60$	3
17	35	40	I 1	56	5	40×60	3

SKYLIGHT AND FLOOR GLASS.

Weight per Cubic Foot, 156 Pounds.

WEIGHT PER SQUARE FOOT.

Thickness .	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	I inch.
Weight . .	1.62	2.43	3.25	4.88	6.50	8.13	9.75	I 3 lbs.

FLAGGING.

Weight per Cubic Foot, 168 Pounds.
WEIGHT PER SQUARE FOOT.

Thickness .	\mathbf{I}	2	3	4	5	6	7	8 inch.
Weight. .	$\mathbf{1 4}$	28	42	56	70	84	98	$\mathbf{1 1 2}$ lbs.

CAPACITY OF CISTERN.

In Gallons, for each Foot in Depth.

Diameter, in Feet.	Gallons.	Diameter, in Feet.	Gallons.
2.	23.5	9.	475.87
2.5	36.7	9.5	553.67
3.	52.9	10.	587.5
$3 \cdot 5$	71.96	11.	710.9
4.	94.02	12.	846.4
4.5	119.	13.	992.9
5.	146.8	14.	1151.5
$5 \cdot 5$	177.7	15.	I 321.9
+6.	211.6	20.	2350.0
6.5	248.22	25.	3570.7
7.	287.84	30.	5287.7
$7 \cdot 5$	330.48	35.	7189.
8.	376.	40.	9367.2
8.5	424.44	45.	II893.2

The American standard gallon contains 231 cubic inches, or $8 \frac{1}{3}$ pounds of pure water. A cubic foot contains 62.3 pounds of water, or 7.48 gallons. Pressure per square inch is equal to the depth or head in feet multiplied by .433 . Each 27.72 inches of depth gives a pressure of one pound to the square inch.

THE PHGENIX IRON COMPANY,

ROOFING SLATE.

General Rule for the Computation of Slate.

From the length of the slate take three inches, or as many as the third covers the first ; divide the remainder by 2 , and multiply the quotient by the width of the slate, and the product will be the number of square inches in a single slate. Divide the number of square inches thus procured by 144, the number of square inches in a square foot, and the quotient will be the number of feet and inches required. A square of slate is what will cover 100 square feet, when laid upon the roof.

Weight per Cubic Foot, 174 Pounds.

WRIGHT PRR SQUARE FOOT.

Thickness.	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	I inch.
Weight.	I.8I	2.7 I	3.62	5.43	7.25	9.06	Io.87	I4.5 lbs.

TABLE OF SIZES AND NUMBER OF SLATE

In One Square.

Size, in Inches.	No. of Slate in Square.	Size, in Inches.	No. of Slate in Square.	Size, in Inches.	No. of Slate in Square.
6×12	533	8×16	277	12×20	141
$7 \quad 12$	457	9 16	246	1420	121
$8 \quad 12$	400	1016	221	1122	137
912	355	1216	184	1222	126
$10 \quad 12$	320	$9 \quad 18$	213	1422	108
1212	266	1018	192	1224	114
$7 \quad 14$	374	118	174	1424	98
$8 \quad 14$	327	1218	160	1624	86
914	291	$14 \quad 18$	137	1426	89
$10 \quad 14$	261	1020	169	1626	78
I2 14	218	II 20	I 54		

410 WALNUT ST., PHILADELPHIA.

SPECIFIC GRAVITY
 AND
 WEIGHTS OF VARIOUS SUBSTANCES.

Name of Substance.	WEIGHTS.			Specific Gravity.
	Per Cubic Foot.	Per \square Foot, 1 In. Thick.	Per Cubic Inch.	
Water, Pure	62.3	5.19	. 036	1.000
Water, Sea	64.3	$5 \cdot 36$. 037	1.028
Wrought Iron	480	40.00	. 277	7.70
Cast Iron	450	37.50	. 260	7.20
Steel	490	40.84	.283	7.84
Lead	710	59.16	. 410	11.36
Copper, Rolled	548	45.66	. 317	8.80
Brass, Rolled	524	43.66	. 302	8.40
Sand	98	8.23	. 057	I. 57
Clay	120	10.00	. 069	1.92
Brickwork, Common	120	10.00	. 069	I. 92
" Close Joints	140	11.66	.08I	2.24
Limestone	168	18.00	. 124	2.68
Glass	I 56	13.00	. 090	2.49
Pine, White	30	2.50	. 017	.48
Pine, Yellow.	35	2.91	. 019	.56
Hemlock	25	2.08	.OI 5	. 40
Maple	49	4.08	. 028	.78
Oak, White	50	4.16	. 030	. 80
Walnut	4 I	3.41	. 023	. 65

PROPERTIES OF CIRCLES.

(I.) Given, chord A D C and vers. sine or rise B D, to find radius,

$$
\begin{gathered}
\frac{\mathrm{ADC}}{2}=\mathrm{AD} \text { or } \mathrm{DC} \cdot \therefore \frac{\mathrm{AD}^{2}+\mathrm{BD}^{2}}{2 \mathrm{BD}}=\mathrm{BE} \\
\mathrm{~K}=\frac{\mathrm{c}^{2}+4 \mathrm{~h}^{2}}{8 \mathrm{~h}}
\end{gathered}
$$

(2.) Given, chord A D C and radius B E, to find rise B D,

$$
\begin{gathered}
B E-\sqrt{B E^{2}-A D^{2}}=B D \\
h=R-\sqrt{R^{2}-\frac{c^{2}}{4}}
\end{gathered}
$$

(3.) Given, the radius and rise, to find the chord A D C,

$$
A D=\sqrt{B E^{2}-(B E-B D)^{2}}
$$

Chord A D C $=2$ A D $=2 \sqrt{ } \mathrm{BE}^{2}-(\mathrm{BE}-\mathrm{BD})^{2}$

$$
\mathrm{c}=2 \sqrt{2} \mathrm{hR}-\mathrm{h}^{2}
$$

(4.) Given, the chord of an arc and the chord of half the arc, to find the length of the arc,

$$
\frac{8 \text { A B - A D C }}{3}=\operatorname{arc~A~B~C~(very~nearly).~}
$$

(5.) To find the number of degrees in the arc of a circle, when the diameter, or radius, and the length of the arc are given,

$$
\frac{\text { Arc A B C }}{\pi \times \text { diameter }} \times 360^{\circ}=\text { degrees in arc A B C }
$$

(6.) Length of an arc of one degree $=\mathrm{R} \times .0174533$ Length of an arc of one minute $=\mathrm{R} \times .0002909$ Length of an arc of one second $=\mathrm{R} \times .0000048$

Example.-Let radius $=100$ feet, and the angle of the arc be 90°. What is the length of the arc ?

$$
100 \times .0174533 \times 90^{\circ}=157.08 \text { feet. }
$$

MENSURATION OF SURFACES.

Area of circle	$=$ Diameter 2	$\times .7854$
Area of ellipse	$=$ Transv.axis \times conjug.axis $\times .7854$	
Area of sector of circle	$=$ Arc	$\times \frac{1}{2}$ radius
Area of parabola	$=$ Base	$\times \frac{2}{3}$ height
Surface of sphere	$=$ Diameter 2	$\times 3.1416$

MENSURATION OF SOLIDS.

Cylinder $\quad=$ Area of one end X length
Sphere $\quad=$ Diameter $^{3} \quad \times .5236$
Cone, or pyramid $=$ Area of base $\quad \times \frac{1}{3}$ height
Λ ny prismoid $=$ Sum of areas of the two parallel surfaces +4 times the area of a midway section \times length, and the total product divided hy 6 .

PROPERTIES OF TRIANGLES.

In right-angled triangles

$$
\begin{aligned}
\text { hypoth. }^{2} & =\text { base }^{2}+\text { perpend. }^{2} \\
\text { base }^{2} & =\text { (hyp. }+ \text { perp. }) \times \text { (hyp. }- \text { perp. }) \\
\text { perp. }^{2} & =\text { (hyp. }+ \text { base }) \times \text { (hyp.-base }
\end{aligned}
$$

VALUE OF ANY SIDE A.

$$
\begin{aligned}
\mathrm{A}=\frac{\mathrm{B} \sin \cdot a}{\sin . b} & \mathrm{~A}=\frac{\mathrm{C} \sin . a}{\operatorname{Sin} \cdot c} \\
\mathrm{~A} & =\sqrt{\mathrm{B}^{2}+\mathrm{C}^{2}-2 \mathrm{~B} \mathrm{C} \mathrm{\cos } \mathrm{\cdot a}} \\
\mathrm{~A} & =-\frac{\mathrm{B}}{\cos \cdot c+\sin . c \cot \cdot a} \\
\mathrm{~A} & =\frac{\mathrm{C}}{\cos . b+\sin . b \cot \cdot a} \\
\mathrm{~A} & =\mathrm{B} \cos . c+\mathrm{B} \sin . c \cot . b
\end{aligned}
$$

VALUE OF ANY ANGLE.

$\operatorname{Sin} . b=\frac{\mathrm{B} \sin . a}{\mathrm{~A}}$
$\operatorname{Sin} . b=\frac{\mathrm{B} \sin . a}{\mathrm{C}}$

$$
\operatorname{Cos.} b=\frac{\mathrm{A}^{2}+\mathrm{C}^{2}-\mathrm{B}^{2}}{2 \mathrm{AC}}
$$

Sin. $b=\sin .(c+a)$.
$\operatorname{Sin} . b=\sin . c \cos . a+\cos . c \sin . a$.

TRIGONOMETRICAL EXPRESSIONS.

The diagram shows the different trigonometrical expressions in terms of the angle A.

Complement of an angle $=$ its difference from 90°. Supplement $=$ its difference from 180°.

TRIGONOMETRICAL EQUIVALENTS.

$\sqrt{\left(1-\operatorname{Sin}^{2}\right)}$	$=\mathrm{Cosin}$.	$\sqrt{\left(1-\operatorname{Cosin}^{2}\right)}$ - Sine.
Sin \div Tan	$=\operatorname{Cosin}$.	Cosin - Cotan $=$ Sine.
$\operatorname{Sin} \times \operatorname{Cotan}$	$=\mathrm{Cosin}$.	$\mathrm{I} \div$ Cotan = Tangent.
Sine -Cos	$=$ Tangent.	$1 \div$ Sin $=$ Cosecant.
Cos \div Sine	$=$ Cotang.	$1 \div$ Cosin $=$ Secant.
$\mathrm{Sin}^{2}+\mathrm{Cos}^{2}$	$=\mathrm{Rad}^{2}$.	$1 \div$ Cosecant $=$ Sine.
$\mathrm{Rad}^{2}+\mathrm{Tan}^{2}$	$=$ Secant ${ }^{2}$.	$1 \div$ Secant $=$ Cosin.
$\mathrm{I} \div$ Tan	$=$ Cotang.	Rad-Cosin $=$ Versin.
		Rad--Sin $\quad=$ Coversin.

USE OF TABLE OF NATURAL SINES, ETc.

Example 1. To find the angle a, when A D and $\mathrm{B}^{\prime} \mathrm{D}$ are given, from table of natural sines and tangents, p. 153.

A D being radius, $B^{\prime} D=\tan$ a. Let $\left\{\begin{array}{l}A D=20 . \\ B^{\prime} D=10 .\end{array}\right.$

$$
\text { Then } \frac{\mathrm{B}^{\prime} \mathrm{D}}{\mathrm{~A} \mathrm{D}}=\frac{10}{20}=.50000 .
$$

Referring to table we find for 26°, the natural tangent to be .48773
27°, the natural tangent to be $.5095^{2}$
Difference 02179
The angle, therefore, is more than 26 and less than 27 degrees. If greater accuracy is required, take the difference between natural tangent of 26° and 27° as above, viz., .02179 , and divide by 60 , which will give .00036 for one minute. Now subtract from .50000 the natural tangent for 26°, viz., .48773 , leaving . 01227 , and divide the difference by .00036 ; the quotient will be 34 minutes. The angle, therefore, is $26^{\circ} 34^{\prime}$.

Example 2. If $\mathrm{A} D=20$, and $\mathrm{B} \mathrm{D}=20$, what will be the angle subtended by B D ?

$$
\frac{\mathrm{B} \mathrm{D}}{\mathrm{~A} \mathrm{D}}=\frac{20}{20}=1.0000 .
$$

The natural tangent of 45° is I .

410 WALNUT ST., PHILADELPHIA.

NATURAL SINES, ETC.

Deg.	Sine.	Cover.	Cosecant	Tangent	Cotang.	Secant.	Versine.	Cosine.	Deg.
-	. 00	1.00000		. 0		\bigcirc	. 0		90
1	.01745	. 98254	57.2986	. 01745	57.2899	1.00015	. 0001	99984	89
2	.03489	. 96510	28.6537	.03492	28.6362	1.00060	.0006		8
3	. 05233	. 94766	19.1073	. 05240	19.0811	1.00137	.0013		87
4	. 06975	. 93024	14.3355	. 06992	14.3006	1.00244	. 0024	. 99756	86
5	. 08715	.91284	11.4737	. 08748	11.4300	1.00381	.0038	. 99619	5
6	. 10452	. 89547	9.5667	. 10510	9.5143	1.0055°	. 0054	. 99452	84
7	. 12186	. 87813	8.2055 7.1852	.12278 .14054	8.1443	1.00750	. 0074	. 99254	83
9	. 15943	. 84356	6.3924	.14084	7.1515 6.3137	1.01246	.0097	. 99026	82 81
10	. 17364		5.	. 17632	5.6712		. 01		80
11	19080	.80919	5.2408	. 19438	5.1445	1.0187 T	. 0183	. 98162	79
12	.20791	. 7920	4.8097	. 21255	47046	1.02234	. 0218	. 97814	78
13	. 22495	. 77504	4.4454	. 23086	4.3314	1.02630	. 0256	. 97437	77
14	. 24192	. 75807	4.1335	. 24932	4.0107	1.03061	. 0297	. 97029	76
15	.25881	. 74118	3.8637	. 26794	3.7320	1. 03527	.0340	. 96592	75
16	. 27563	. 72436	3.6279	. 28674	3.4874	1.04029	. 0387	.96126	74
17	. 29237	. 70762	3.4203	- 30573	3.2708	1. 04569	. 0436	. 95630	73
18	. 30901	. 69098	3.2360	. 32491	3.0776	1.05146	. 0489	.95105	72
19	. 32556	. 67443	3.0715	-34432	2.9042	1.05762	. 0544	.94551	71
20	. 3420	. 6	2.9238	. 36397	2.7474	1.06417	. 0603	.93969	70
21	-3583	. 64163	2.7904	. 38386	2.6050	1.07114	.0664	. 93358	
22	. 37460	. 62539	2.6694	. 40402	2.4750	1.07853	. 0728	. 92718	
23	- 39073	. 60926	2.5593	. 42447	2.3558	1.08636	. 0794	92050	67
24	. 40673	. 59326	2.4585	. 44522	2.2460	1.09463	. 0864	.91354	66
25	. 42261	. 57738	2.3662	. 46630	2.1445	1.10337	. 0936	. 90630	65
26	. 43837	. 56162	2.2811	. 48773	2.0503	1.11260	1012	. 89879	64
27	. 45399	. 54600	2.2026	. 50952	1. 9626	1.12232	. 1089	. 89100	
28	. 46947	. 53052	2.1360	. 53170	I. 8807	1.13257	. 1170	. 88294	6
29	. 48480	.51519	2.0626	. 55430	1. 8040	1.1433 .5	. 1253	. 87461	61
30	. 5000	. 50000	2.0000	. 577	1. 7320	1.1547°		. 86602	60
31	. 51503	. 48496	1. 9416	. 60086	1. 6642	1.16663	. 1428	. 85716	59
32	52991	. 47008	1.8870	. 62486	1.6003	1.17917	. 1519	. 84804	58
33	. 54463	.45536	1.8360	. 64940	1. 5398	1. 19236	.1613	. 83867	57
34	.55919	. 44080	1.7882	. 67450	1.4825	1.20621	. 1709	82903	56
35	. 57357	. 42642	I. 7434	. 70020	I. 428 I	1. 22077	. 1808	. 81915	55
36	. 58778	. 41221	1.7013	. 72654	1.3763	1.23606	. 1909	.80901	54
37	.60181	. 39818	1. 6616	. 75355	1.3270	1.25213	. 2013	. 79863	53
38	. 61566	. 384.33	1. 6242	. 78128	1.2799	1.26901	. 2119	. 78801	52
39	. 62932	. 37067	1.5890	.8c978	1. 2348	1. 28675	. 2228	. 77714	51
40		. 35721	I. 5557	. 839	1. 1917	I. 30540	. 2339	. 76604	50
41	. 65605	. 3439	I. 5242	. 86928	1.1503	1.32501	2452	. 75470	49
42	.66913	. 33086	1. 4944	. 90040	1.	1.34563	. 2568	. 74314	48
43	.68199	. 31800	I. 4662	. 93251	1.0723	1.36732	. 2685	.73135	
44	. 69465	. 30534	I. 4395	. 96568	1.0355	1.39016	.28c6	. 71933	46
45	.70710	. 29289	1.4142	1.00000	1.0000	1.41421	. 2928	. 70710	45
	Cosine.	Versine.	Secant.	Cotang.	Tangent	Cosecant.	Cover.	Sine.	

THE PHGENIX IRON COMPANY,

CIRCUMFERENCES OF CIRCLES.

Advancing by Eighths.
CIRCUMFERENCES.

$\underset{\Xi}{\sharp}$. 0	. ${ }_{8}$	$\cdot \frac{1}{4}$. $\frac{3}{8}$. $\frac{1}{2}$. $\frac{5}{8}$. $\frac{3}{4}$. $\frac{7}{8}$
	. 0	. 3927	. 7854	1.178	1. 570	1.963	2.356	2.74
	3.141	3.534	3.927	4.319	4.712	5. 105	5.497	5.89
2	6.283	6.675	7.063	7.461	7.854	8.246	8.639	9.03
3	9.424	9.817	10.21	10.60	10.99	11.38	11.78	12.17
4	12.56	12.95	13.35	13.74	14.13	14.52	14.92	15.31
5	15.70	16.10	16.49	16.88	17.27	17.67	18.06	18.45
6	18.84	19.24	19.63	20.	20.42	20.81	21.20	21.59
7	21.99	22.38	2277	23.16	23.56	23.95	24.34	24.74
8	25.13	25.52	25.91	2631	26.70	27.09	27.48	7.88
9	28.27	28.66	29.05	29.45	29.84	30.23	30.63	31.02
-	$3^{1.41}$	3 r .80	32.20	32.59	32.98	33.37	33.77	34.15
11	34.55	34.95	35.34	35.73	36.12	36.52	36.91	7.30
12	37.69	38.09	38.48	38.87	39.27	39.66	40.05	40.44
13	40.84	41.23	41.62	42.01	42.41	42.80	43.19	43.58
14	43.98	44.37	44.76	45.16	45.55	45.94	46.33	46.73
15	47.12	47.51	47.90	48.30	48.69	49.08	49.48	49.87
16	50.26	50.65	51.05	51.44	51.83	52.22	52.62	53.01
17	53.40	53.79	54.19	54.58	54.97	55.37	55.76	56.15
18	56.54	56.94	57.33	57.72	58.11	58.51	58.90	59.29
9	59.69	60.08	60.47	60.86	61.26	61.65	62.04	62.43
20	62.83	63.22	63.61	64.01	64.40	64.79	65.18	65.58
21	65.97	66.36	66.75	67.15	67.54	67.93	68.32	8.72
22	69.11	69.50	69.90	70.29	70.68	71.07	71.47	1. 86
23	72.25	72.64	73.04	73.43	73.82	74.22	74.61	75.00
24	75.39	75.79	76.18	76.57	76.96	$77 \cdot 3^{6}$	77.75	7814
25	78.54	78.93	79.32	79.71	80.10	80.50	80.89	81.28
26	81.68	82.07	82.46	82.85	83.25	83.64	84.03	84.43
27	84.82	85.21	85.60	86.00	86.39	86.78	87.17	87.57
28	87.96	88.35	88.75	89.14	89.53	89.92	90. 32	90.71
29	91.10	91.49	91.89	92.28	92.67	93.06	93.46	93.85
30	94.24	94.64	95.03	95.42	95.8 I	96.21	96.60	96.99
31	97.39	97.78	98.17	98.57	98.96	99.35	99.75	100.14
32	100.53	100.92	101.32	101.71	102.10	102.49	102.89	103.29
33	103.67	104.07	104.46	104.85	105.24	105. 64	106.03	106.42
34	106.81	107.21	107.60	107.99	108.39	108.78	109.17	109.56
35	109.96	110.35	110.74	III.13	111.53	111.92	112.31	112.71
36	113.10	113.49	113.88	114.28	114.67	115.06	115.45	115.85
37	116.24	116.63	117.02	117.42	117.81	118.20	118.60	118.99
38	119.38	119.77	120.17	120.56	120.95	121.34	121.74	122.13
39	122.52	122.92	123.31	123.70	124.09	124.49	124.88	125.27
40	12566	126.06	126.45	126.84	127.24	12763	128.02	128.41
4	128.81	129.20	127.59	129.98	130.38	130.77	131.16	131.55
42	131.95	132.34	132.73	133.13	133.52	133.91	134.30	134.70
43	135.09	135.48	13587	136.27	136.66	137.05	137.45	137.84
44	138.23	138.62	139.02	139.41	13980	140.19	140.59	140.98
45	141.37	141.76	142.16	142.55	142.94	143.34	143.73	144.12

410 WALNUT ST., PHILADELPHIA.

AREAS OF CIRCLES.

Advancing by Eighths.
AREAS.

尶	. 0	. $\frac{1}{8}$	$\cdot \frac{1}{4}$. 8	. $\frac{1}{2}$	$\frac{5}{8}$	$\cdot \frac{3}{4}$. $\frac{7}{8}$
-	. 0	. O 22	. 0490	. 1104	. 1963	. 3068	. 4417	.6013
1	. 7854	. 9940	1.227	I 484	1.767	2.073	2.405	2.761
2	3.1416	3.546	3.976	4.430	4.908	$5 \cdot 4 \mathrm{II}$	5.939	6.491
3	7.068	7.669	8.295	8.946	9.621	10. 32	11.04	1179
4	12.56	13.36	14.18	15.03	15.90	16.80	17.72	18.66
5	19.63	20.62	21.64	22.67	23.75	24.85	25.96	27.10
6	28.27	29.46	30.67	3 I .91	3318	34.47	35.78	37.12
7	3848	39.87	41.28	42.71	44.17	45.66	47. 17	48.70
8	50.26	51.84	53.45	55.08	56.74	58.42	6013	61.86
9	63.61	65.39	67.20	69.02	70.88	72.75	74.66	76.58
10	78.54	80. 51	82.51	84.54	86.59	8866	9076	92.88
11	95.03	97	99.40	Ior. 6	103.8	s06.1	108.4	110.7
12	113.0	115.4	117.8	120.2	122.7	125.1	127.6	130.1
13	132.7	135.2	137.8	140.5	I 43.1	145.8	148.4	${ }^{151.2}$
14	153.9	${ }^{\text {r }} 56.6$	159.4	152.2	165.1	167.9	170.8	${ }^{1} 73.7$
15	176.7	${ }^{1} 79.6$	182.6	185.6	188.6	191.7	194.8	197.9
16	201.0	204.2	207.3	210.5	213.8	217.	220.3	223.6
17	226.9	230.3	2337	237.1	2405	243.9	247.4	2509
18	254.4	258.0	261.5	265.1	268.8	272.4	276.1	279.8
19	283.5	287.2	291.0	294.8	298.6	302.4	306.3	310.2
20	314.1	318.1	322.0	326.0	330.0	334.1	338 I	342.
21	346.3	350.4	3546	358.8	363.0	367.2	37 I .5	375.8
22	380.1	384.4	388.8	393.2	397.6	402.0	406.4	410.9
2	415.4	420.0	424.5	429.1	433.7	438.3	443.0	447.6
24	452.3	457	461.8	466.6	47 I .4	476.2	48 I .1	485.9
25	490.8	495.7	500.7	505.7	510.7	515.7	520.7	5258
2	530.9	536.0	541.1	546.3	551.5	556.7	562.0	67.2
27	572.5	577.8	583.2	588.5	593.9	jug. 3	504.8	610.2
28	615.7	621.2	626.7	632.3	6379	643.5	649.1	654.8
29	660.5	666.2	671.9	677.7	683.4	6892	695. r	700.9
30	706.8	712.7	718.6	724.6	730.6	736.6	742.6	748.6
31	754.8	760.9	767.0	773.1		785.5	791.7	798.0
32	804.3	810.6	816.9	8232	829.6	836.0	842.4	848.8
33	855.3	861. 8	868.3	874.9	88 r .4	888.0	894.6	901.3
34	907.9	914.7	921.3	928.1	934.8	941.6	948.4	955.3
35	962.1	969.0	975.9	982.8	989.8	996.8	гоо3.8	1010.8
36	1017.9	1025.0	1032.1	1039.2	1046.3	10535	1060.7	1068.0
37	1075.2	1082.5	1089.8	1097. 1	1104.5	1III. 8	1119.2	1126.7
38	1134.1	1141.6	1149.1	1156.6	1164.2	11717	1179.3	1186.9
39	1194.6	1202.3	1210.0	1217.7	1225.4	1233.2	1241.0	1248.8
40	1256.6	1264.5	1272.4	1280.3	1288.2	1296.2	I 304.2	1312.2
\% 1	1320.3	1328.3	1336.4	1344.5	1352.7	13608	1369.0	1377.2
42	1385.4	1393.7	1402.0	1410.3	14186	1427.0	1435.4	1443.8
43	1452.2	1460.7	1469.1	1477.6	1486.2	1494.7	1503.3	15 11.9
44	1520.5	1529.2	1537.9	1546.6	15553	1564.0	1572.8	1581.6
45	1590.4	1599.3	1608.2	16170	16260	1634.9	1643.9	1652.9

THE PHCENIX IRON COMPANY,

SURVEYING MEASURE.

(LINEAL.)
Inches. Feet. Yards. Chains. Mile.

1. $=.0833=.0278=.00126=.0000158$

I2. I. .333 .OI515 .000189
36. 3. I. . 04545 .000568
792. 66. 22. I. .OI25 63360. 5280. I76n. 80. I.

One knot or geographical mile $=6086.07$ feet $=1855 . \mathrm{yI}$ metres $=$ I. 1526 statute mile.

One admiralty knot $=$ I.I5I5 statute miles $=6080$ feet.

LONG MEASURE.

Inches. Feet. Yards. Poles. Furl. Mile.
$\mathrm{I} .=.083=.02778=.005=.000126=.0000158$
12. I. . 333 . 0606 .OOI 51 . 0001894
36. 3. I. . 82 . 00454 . 000568
198. $161 / 2$. $51 / 2$. 1.025 . 003125
7920. 660. 220. 40. I. . 125
63360. 5280. I760. $320 . \quad 8 . \quad$ I

A palm $=3$ inches. \quad A hand $=4$ inches.
A span $=9$ inches. A cable's length $=120$ fathoms.

FRENCH LONG MEASURE.

	Inches.	Feet.	Yards.	Miles.
Millimetre....	. 03937	. 0033		
Centimetre....	. 39368	. 0328		
Decimetre.....	3.9368	. 3280	. 10936	
Metre...........	39.368	3.2807	1.09357	
Decametre....	393.68	32.807	109357	
Hectometre...	328.07	109.357	. 062134
Kilometre.....		3280.7	1093.57	. 621346
Myriametre...		32807.	10935.7	6.213466

SQUARE MEASURE.

A section of land is I mile square, and contains 640 acres. A square acre is 208.71 ft . at each side; or, $220 \times 198 \mathrm{ft}$. A square $1 / 2$ acre is 147.58 ft . at each side; or, $110 \times 198 \mathrm{ft}$. A square $1 / 4$ acre is 104.355 ft . at each side; or, $55 \times 198 \mathrm{ft}$. A circular acre is 235.504 ft . in diameter. A circular $1 / 2$ acre is 166.527 ft . in diameter. A circular $1 / 4$ acre is 117.752 ft . in diameter.

FRENCH SQUARE MEASURE.

Square.	Square Inches.	Square Feet.	Square Yards.
Millimetre....	. 00154	. 0000107	.000001
Centimetre....	. 15498	.0010763	.000119
Decimetre.....	15.498	.1076305	.orr958
Metre or Cen.	1549.8	10.76305	r.I9589
Decametre...	I54988.	1076.305	119.589
Hectare...		107630.58	1195895
Kilometre.....	. 38607 mls	10763058.	1195895.
Myriametre...	38.607		

THE PHCENIX IRON COMPANY,

CUBIC MEASURE.

Inchis.	Feet.	Yard.	Cubic Metres.
$\mathbf{1}$.	$.0005788=$	$.000002144=$.000016386
$\mathbf{1 7 2 8}$.	$\mathbf{1}$.	.03704	.028315
46656.	27.	1.	.764513

A CUBIC FOOT IS EQUAL TO

1728 cubic inches. .037037 cubic yard.
.803564 U. S. struck bushel of 2150.42 cub. in.
3.21426 U. S. pecks.
7.48052 U. S. liquid gallons of 231 cubic in.
6.4285 I U. S. dry gallons of 268.8025 cubic in.
29.92208 U. S. liquid quarts. 25.71405 U. S. dry quarts. 59.84416 U. S. liquid pints. 51.42800 U. S. dry pints. 239.37662 U. S. gills. .26667 flour barrel of 3 struck bushels.
. 23748 U. S. liquid barrel of $311 / 2$ galions.

A cubic inch of water at 62° Fahr. weighs $25^{2} .45^{8}$ grains. A cubic foot of water at 62° Fahr. weighs 1002.7 ounces. A cubic yard of water at 62° Fahr. weighs 1692 . pounds.

FRENCH CUBIC OR SOLID MEASURE.

		Pint.	Quart.	Bush.	Cubic Inch.	Cu. Ft.
Centilitre..... $\{$	Dry 0181			\}.61016	
	Liquid	. 0211				
Decilitre...... $\{$	Dry 1816	. 0908		\}6.1016	
Litre........... $\{$	Liquid	.2113 1.816	. 1056 .908			
	Liquid	2.113	I. 056		\} 61.016	. 0353
Decalitre...... $\{$	Dry ...	21.13	9.08	. 2837	610.16	. 3531
Hectolitre... $\{$	Liquid Dry...	21.13	10.56 90.8	2837	6101. 6	3.531
	Liquid	211.3	105.6	283		
Kilolitre or Cubic Metre...	Dry...			28.37	\}rior6.	$35 \cdot 31$
Myriolitre.... $\{$	Dry...			283.7		
	Liquid		10565			353.1

410 WALNUT ST., PHILADELPHIA.

AVOIRDUPOIS WEIGHT.

The standard avoirdupois pound is the weight of 27.7015 cubic inches of distilled water, weighed in the air, at 39.83 degrees Fahr., barometer at thirty inches.

A drachm $=27.343$ grains.
A stone $=14$ pounds.
A quintal $=$ Ioo kilogrammes.
7000 grains $=1$ avoir. pound $=1.21528$ troy pounds. 5760 grains $=1$ troy pound $=.82285$ avoir. pound.

Kilos p. sq. centim. $X 14.22=$ Pounds p. sq. inch. Pounds p. sq. inch $X .0703=$ Kilos p. sq. centim.

FRENCH WEIGHTS.

EQUIVALENT TO AVOIRDUPOIS.

	Grains.	Ounces.	Pounds.
Milligramme 115433		
Centigramme......	. 15433 I	. 000352	. 000022
Decigramme	I. 5433 I	. 003527	. 000220
Gramme	15.4331	. 035275	. 002204
Decagramme......	I 54.33I	. 352758	. 022047
Hectogramme.....	I 543.3I	3.52758	. 220473
Kilogramme.......	I 5433. 1	35.2758	2.20473
Myriogramme		352.758	22.0473
Quintal..............		3527.58	220.473
Millier or Tonne..		35275.8	2204.73

$7 / 83$
$+4=$
5580

GETTY RESEARCH INSTITUTE
 33125013608480

[^0]:

[^1]: * Note. - The conclusion of Mr Kirkaldy in respect to cold rolling is undoubtedly true when the rolling ainounts to wire-drawing; but when the compression of the surface by rolling diminishes the sectional area in greater proportion than it extends the bar, the result, according to the experience of the Pittsburgh manufacturers, is a slight increase in the density of the iron.

